Recurrence spectrum in smooth dynamical systems

被引:21
|
作者
Saussol, B
Wu, J
机构
[1] Univ Picardie, CNRS, UMR 6140, LAMFA, F-80039 Amiens, France
[2] Wuhan Univ, Dept Math, Wuhan 430072, Peoples R China
[3] Wuhan Univ, Nonlinear Sci Ctr, Wuhan 430072, Peoples R China
关键词
D O I
10.1088/0951-7715/16/6/306
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for conformal expanding maps the return time does have constant multifractal spectrum. This is the counterpart of the result by Feng and Wu in the symbolic setting.
引用
收藏
页码:1991 / 2001
页数:11
相关论文
共 50 条
  • [31] Synchronization and Non-Smooth Dynamical Systems
    Jaume Llibre
    Paulo R. da Silva
    Marco A. Teixeira
    Journal of Dynamics and Differential Equations, 2012, 24 : 1 - 12
  • [32] Hidden Degeneracies in Piecewise Smooth Dynamical Systems
    Jeffrey, Mike R.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (05):
  • [33] Synchronization and Non-Smooth Dynamical Systems
    Llibre, Jaume
    da Silva, Paulo R.
    Teixeira, Marco A.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2012, 24 (01) : 1 - 12
  • [34] ASYMPTOTICS FOR SOLUTIONS OF SYSTEMS OF SMOOTH RECURRENCE EQUATIONS
    BAULDRY, WC
    MATE, A
    NEVAI, P
    PACIFIC JOURNAL OF MATHEMATICS, 1988, 133 (02) : 209 - 227
  • [35] Appendix: On smooth systems with discrete spectrum
    Furman, A
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2000, 6 (01) : 84 - 88
  • [36] Detecting Recurrence Domains of Dynamical Systems by Symbolic Dynamics
    Graben, Peter Beim
    Hutt, Axel
    PHYSICAL REVIEW LETTERS, 2013, 110 (15)
  • [38] Weighted recurrence network for characterizing continuous dynamical systems
    Yang, Guangyu
    Xu, Daolin
    Zhang, Haicheng
    Xia, Shuyan
    MODERN PHYSICS LETTERS B, 2021, 35 (21):
  • [40] Recurrence of Transitive Points in Dynamical Systems with the Specification Property
    Xiao Yi WANG
    Yu HUANG
    Acta Mathematica Sinica,English Series, 2018, (12) : 1879 - 1891