Classical cuts for mixed-integer programming and branch-and-cut

被引:7
|
作者
Padberg, M
机构
[1] 13007 Marseille, 17, Rue Vendôme
关键词
mixed-integer programming; cutting planes; Gomory cuts; branch-and-cut;
D O I
10.1007/s001860100120
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We review classical valid linear inequalities for mixed-integer programming, i.e., Gomory's fractional and mixed-integer cuts, and discuss their use in branch-and-cut. In particular, a generalization of the recent mixed-integer rounding (MIR) inequality and a sufficient condition for the global validity of classical cuts after branching has occurred are derived.
引用
收藏
页码:173 / 203
页数:31
相关论文
共 50 条
  • [31] bc-opt:: a branch-and-cut code for mixed integer programs
    Cordier, C
    Marchand, H
    Laundy, R
    Wolsey, LA
    [J]. MATHEMATICAL PROGRAMMING, 1999, 86 (02) : 335 - 353
  • [32] A Relax-and-Cut Framework for Gomory's Mixed-Integer Cuts
    Fischetti, Matteo
    Salvagnin, Domenico
    [J]. INTEGRATION OF AI AND OR TECHNIQUES IN CONSTRAINT PROGRAMMING FOR COMBINATORIAL OPTIMIZATION PROBLEMS, 2010, 6140 : 123 - +
  • [33] Branch-and-Bound for Biobjective Mixed-Integer Linear Programming
    Adelgren, Nathan
    Gupte, Akshay
    [J]. INFORMS JOURNAL ON COMPUTING, 2022, 34 (02) : 909 - 933
  • [34] A branch and cut algorithm to optimize a weighted sum-of-ratios in multiobjective mixed-integer fractional programming
    Costa, Joao Paulo
    Alves, Maria Joao
    [J]. OR SPECTRUM, 2024,
  • [35] A branch-and-cut method for 0-1 mixed convex programming
    Stubbs, RA
    Mehrotra, S
    [J]. MATHEMATICAL PROGRAMMING, 1999, 86 (03) : 515 - 532
  • [36] SUBSET COEFFICIENT REDUCTION CUTS FOR 0/1 MIXED-INTEGER PROGRAMMING
    MARTIN, RK
    SCHRAGE, L
    [J]. OPERATIONS RESEARCH, 1985, 33 (03) : 505 - 526
  • [37] A branch-and-cut method for 0-1 mixed convex programming
    Robert A. Stubbs
    Sanjay Mehrotra
    [J]. Mathematical Programming, 1999, 86 : 515 - 532
  • [38] A branch-and-cut algorithm using polar cuts for solving nonconvex quadratic programming problems
    Deng, Zhibin
    Fang, Shu-Cherng
    Lu, Cheng
    Guo, Xiaoling
    [J]. OPTIMIZATION, 2018, 67 (02) : 359 - 375
  • [39] The ring-star problem: A new integer programming formulation and a branch-and-cut algorithm
    Simonetti, L.
    Frota, Y.
    de Souza, C. C.
    [J]. DISCRETE APPLIED MATHEMATICS, 2011, 159 (16) : 1901 - 1914
  • [40] Branch and cut methods for mixed integer linear programming problems
    Caccetta, L
    [J]. PROGRESS IN OPTIMIZATION: CONTRIBUTIONS FROM AUSTRALASIA, 2000, 39 : 21 - 44