Passive tracer in non-Markovian, Gaussian velocity field

被引:0
|
作者
Chojecki, Tymoteusz [1 ]
机构
[1] UMCS, Inst Math, Pl Marii Curie Sklodowskiej 1, PL-20031 Lublin, Poland
关键词
Passive tracer; Central limit theorem; DIFFUSION;
D O I
10.1016/j.spl.2018.08.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the trajectory of a tracer that is the solution of an ordinary differential equation X(t) = V(t, X(t)), X(0) = 0, with the right hand side, that is a stationary, zero-mean, Gaussian vector field with incompressible realizations. It is known, see Fannjiang and Komorowski (1999), Carmona and Xu (1996) and Komorowski et al. (2012), that X(t)/root t converges in law, as t -> +infinity, to a normal, zero mean vector, provided that the field V(t, x) is Markovian and has the spectral gap property. We wish to extend this result to the case when the field is not Markovian and its covariance matrix is given by a completely monotone Bernstein function. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:21 / 27
页数:7
相关论文
共 50 条
  • [1] Suppression of thermal noise in a non-Markovian random velocity field
    Ueda, Masahiko
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [2] Crossing intervals of non-Markovian Gaussian processes
    Sire, Clement
    [J]. PHYSICAL REVIEW E, 2008, 78 (01):
  • [3] On optimal steering of a non-Markovian Gaussian process
    Alpago, Daniele
    Chen, Yongxin
    Georgiou, Tryphon
    Pavon, Michele
    [J]. 2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 2556 - 2561
  • [4] Lagrangian dynamics for a passive tracer in a class of Gaussian Markovian flows
    Fannjiang, A
    Komorowski, T
    Peszat, S
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 97 (02) : 171 - 198
  • [5] Non-Markovian Speedup Dynamics in Markovian and Non-Markovian Channels
    Jing Nie
    Yingshuang Liang
    Biao Wang
    Xiuyi Yang
    [J]. International Journal of Theoretical Physics, 2021, 60 : 2889 - 2900
  • [6] Non-Markovian Speedup Dynamics in Markovian and Non-Markovian Channels
    Nie, Jing
    Liang, Yingshuang
    Wang, Biao
    Yang, Xiuyi
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (08) : 2889 - 2900
  • [7] Symmetries of general non-Markovian Gaussian diffusive unravelings
    Budini, Adrian A.
    [J]. PHYSICAL REVIEW A, 2015, 92 (05):
  • [8] The non-Markovian property of q-Gaussian process
    Liu, Li-Min
    Cui, Ying-Ying
    Xu, Jie
    Li, Chao
    Gao, Qing-Hui
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (06) : 1802 - 1812
  • [9] Non-Markovian Gaussian dissipative stochastic wave vector
    Budini, AA
    [J]. PHYSICAL REVIEW A, 2001, 63 (01):
  • [10] Qubit entanglement generation by Gaussian non-Markovian dynamics
    Benatti, F.
    Ferialdi, L.
    Marcantoni, S.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (03)