Lagrangian dynamics for a passive tracer in a class of Gaussian Markovian flows

被引:12
|
作者
Fannjiang, A
Komorowski, T
Peszat, S
机构
[1] Marie Curie Sklodowska Univ, Inst Math, PL-20031 Lublin, Poland
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[3] Polish Acad Sci, Inst Math, PL-31512 Krakow, Poland
基金
美国国家科学基金会;
关键词
tracer dynamics; Lagrangian canonical process;
D O I
10.1016/S0304-4149(01)00129-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We formulate a stochastic differential equation describing the Lagrangian environment process of a passive tracer in Ornstein-Uhlenbeck velocity fields. We subsequently prove a local existence and uniqueness result when the velocity field is regular. When the Ornstein-Uhlenbeck velocity field is only spatially Holder continuous we construct and identify the probability law for the Lagranging process under a condition on the time correlation function and the Holder exponent. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:171 / 198
页数:28
相关论文
共 50 条