Spectral-Spatial Scale Invariant Feature Transform for Hyperspectral Images

被引:55
|
作者
Al-khafaji, Suhad Lateef [1 ,2 ]
Zhou, Jun [1 ]
Zia, Ali [1 ]
Liew, Alan Wee-Chung [1 ]
机构
[1] Griffith Univ, Sch Informat & Commun Technol, Nathan, Qld 4111, Australia
[2] Al Nahrain Univ, Dept Comp Sci, Baghdad 10072, Iraq
基金
澳大利亚研究理事会;
关键词
Hyperspectral image; spectral-spatial feature extraction; SIFT; keypoint detection; FEATURE-EXTRACTION; CLASSIFICATION; DETECTOR;
D O I
10.1109/TIP.2017.2749145
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spectral-spatial feature extraction is an important task in hyperspectral image processing. In this paper we propose a novel method to extract distinctive invariant features from hyperspectral images for registration of hyperspectral images with different spectral conditions. Spectral condition means images are captured with different incident lights, viewing angles, or using different hyperspectral cameras. In addition, spectral condition includes images of objects with the same shape but different materials. This method, which is named spectral-spatial scale invariant feature transform (SS-SIFT), explores both spectral and spatial dimensions simultaneously to extract spectral and geometric transformation invariant features. Similar to the classic SIFT algorithm, SS-SIFT consists of keypoint detection and descriptor construction steps. Keypoints are extracted from spectral-spatial scale space and are detected from extrema after 3D difference of Gaussian is applied to the data cube. Two descriptors are proposed for each keypoint by exploring the distribution of spectral-spatial gradient magnitude in its local 3D neighborhood. The effectiveness of the SS-SIFT approach is validated on images collected in different light conditions, different geometric projections, and using two hyperspectral cameras with different spectral wavelength ranges and resolutions. The experimental results show that our method generates robust invariant features for spectral-spatial image matching.
引用
收藏
页码:837 / 850
页数:14
相关论文
共 50 条
  • [41] A Global Spectral-Spatial Feature Learning Network for Semisupervised Hyperspectral Unmixing
    Kong, Fanqiang
    Chen, Mengyue
    Li, Yunsong
    Li, Dan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 3190 - 3203
  • [42] SPECTRAL-SPATIAL FEATURE EXTRACTION BASED CNN FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Quan, Yinghui
    Dong, Shuxian
    Feng, Wei
    Dauphin, Gabriel
    Zhao, Guoping
    Wang, Yong
    Xing, Mengdao
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 485 - 488
  • [43] Discriminating Spectral-Spatial Feature Extraction for Hyperspectral Image Classification: A Review
    Li, Ningyang
    Wang, Zhaohui
    Cheikh, Faouzi Alaya
    SENSORS, 2024, 24 (10)
  • [44] Unsupervised Spectral-Spatial Feature Extraction With Generalized Autoencoder for Hyperspectral Imagery
    Koda, Satoru
    Melgani, Farid
    Nishii, Ryuei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (03) : 469 - 473
  • [45] Spectral-Spatial classification of hyperspectral images using functional data analysis
    Majdar, Reza Seifi
    Ghassemian, Hassan
    REMOTE SENSING LETTERS, 2017, 8 (05) : 488 - 497
  • [46] Classification of hyperspectral images by spectral-spatial dense-residual network
    Cai, Yiheng
    Guo, Yajun
    Lang, Shinan
    Liu, Jiaqi
    Hu, Shaobin
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (03)
  • [47] Weighted Sparse Graph Regularization for Spectral-Spatial Classification of Hyperspectral Images
    Xue, Zhaohui
    Yang, Sirui
    Zhang, Ling
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (09) : 1630 - 1634
  • [48] Parallel and distributed implementation on SPARK of a spectral-spatial classifier for hyperspectral images
    Bouzidi, Sonia
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (03)
  • [49] Spectral-Spatial Sparse Subspace Clustering for Hyperspectral Remote Sensing Images
    Zhang, Hongyan
    Zhai, Han
    Zhang, Liangpei
    Li, Pingxiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (06): : 3672 - 3684
  • [50] Determination of Spectral-Spatial Resolution of Hyperspectral Images For Retinal Imaging Applications
    Baba, Justin S.
    Kashani, Amir H.
    Karnowski, Thomas Paul
    Martin, Gabriel
    Humayun, Mark S.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (13)