Spectral-Spatial Scale Invariant Feature Transform for Hyperspectral Images

被引:55
|
作者
Al-khafaji, Suhad Lateef [1 ,2 ]
Zhou, Jun [1 ]
Zia, Ali [1 ]
Liew, Alan Wee-Chung [1 ]
机构
[1] Griffith Univ, Sch Informat & Commun Technol, Nathan, Qld 4111, Australia
[2] Al Nahrain Univ, Dept Comp Sci, Baghdad 10072, Iraq
基金
澳大利亚研究理事会;
关键词
Hyperspectral image; spectral-spatial feature extraction; SIFT; keypoint detection; FEATURE-EXTRACTION; CLASSIFICATION; DETECTOR;
D O I
10.1109/TIP.2017.2749145
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spectral-spatial feature extraction is an important task in hyperspectral image processing. In this paper we propose a novel method to extract distinctive invariant features from hyperspectral images for registration of hyperspectral images with different spectral conditions. Spectral condition means images are captured with different incident lights, viewing angles, or using different hyperspectral cameras. In addition, spectral condition includes images of objects with the same shape but different materials. This method, which is named spectral-spatial scale invariant feature transform (SS-SIFT), explores both spectral and spatial dimensions simultaneously to extract spectral and geometric transformation invariant features. Similar to the classic SIFT algorithm, SS-SIFT consists of keypoint detection and descriptor construction steps. Keypoints are extracted from spectral-spatial scale space and are detected from extrema after 3D difference of Gaussian is applied to the data cube. Two descriptors are proposed for each keypoint by exploring the distribution of spectral-spatial gradient magnitude in its local 3D neighborhood. The effectiveness of the SS-SIFT approach is validated on images collected in different light conditions, different geometric projections, and using two hyperspectral cameras with different spectral wavelength ranges and resolutions. The experimental results show that our method generates robust invariant features for spectral-spatial image matching.
引用
收藏
页码:837 / 850
页数:14
相关论文
共 50 条
  • [1] Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images
    Zhang, Lefei
    Zhang, Qian
    Du, Bo
    Huang, Xin
    Tang, Yuan Yan
    Tao, Dacheng
    IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (01) : 16 - 28
  • [2] Hyperspectral Imagery Classification based on Rotation Invariant Spectral-Spatial Feature
    Tao, Chao
    Jin, Jing
    Tang, Yuqi
    Zou, ZhengRong
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 422 - 424
  • [3] Deep Multiscale Spectral-Spatial Feature Fusion for Hyperspectral Images Classification
    Liang, Miaomiao
    Jiao, Licheng
    Yang, Shuyuan
    Liu, Fang
    Hou, Biao
    Chen, Huan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (08) : 2911 - 2924
  • [4] Spectral-Spatial Feature Extraction of Hyperspectral Images Based on Propagation Filter
    Chen, Zhikun
    Jiang, Junjun
    Jiang, Xinwei
    Fang, Xiaoping
    Cai, Zhihua
    SENSORS, 2018, 18 (06)
  • [5] Hyperspectral Imagery Classification Based on Rotation-Invariant Spectral-Spatial Feature
    Tao, Chao
    Tang, Yuqi
    Fan, Chong
    Zou, Zhengron
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (05) : 980 - 984
  • [6] Multi-scale superpixel spectral-spatial classification of hyperspectral images
    Li, Shanshan
    Ni, Li
    Jia, Xiuping
    Gao, Lianru
    Zhang, Bing
    Peng, Man
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (20) : 4905 - 4922
  • [7] Spectral-spatial joint sparsity unmixing of hyperspectral images based on framelet transform
    Xu, Chenguang
    Wu, Zhaoming
    Li, Fan
    Zhang, Shaoquan
    Deng, Chengzhi
    Wang, Yuanyun
    INFRARED PHYSICS & TECHNOLOGY, 2021, 112
  • [8] Advances in Spectral-Spatial Classification of Hyperspectral Images
    Fauvel, Mathieu
    Tarabalka, Yuliya
    Benediktsson, Jon Atli
    Chanussot, Jocelyn
    Tilton, James C.
    PROCEEDINGS OF THE IEEE, 2013, 101 (03) : 652 - 675
  • [9] Hyperspectral images classification by spectral-spatial processing
    2016, Institute of Electrical and Electronics Engineers Inc., United States
  • [10] Spectral-Spatial Boundary Detection in Hyperspectral Images
    Al-Khafaji, Suhad Lateef
    Zhou, Jun
    Bai, Xiao
    Qian, Yuntao
    Liew, Alan Wee-Chung
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 499 - 512