Approximation of classes Bpr,θ of periodic functions of one and several variables

被引:0
|
作者
Romanyuk, A. S. [1 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, Kiev, Ukraine
关键词
class B-p(; theta)r of periodic functions; trigonometric polynomial; hyperbolic cross; Bernoulli kernel; Fourier hyperbolic sum; Vallee-Poussin kernel; Fejer kernel;
D O I
10.1134/S0001434610030120
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain order-sharp estimates of best approximations to the classes B-p(r),(theta) of periodic functions of several variables in the space L-q , 1 <= p, q <= infinity, by trigonometric polynomials with "numbers" of harmonics from step hyperbolic crosses. In the one-dimensional case, we establish the order of deviation of Fourier partial sums of functions from the classes B-1(r),(1)(theta) in the space L-1.
引用
收藏
页码:403 / 415
页数:13
相关论文
共 50 条