The Highly Connected Matroids in Minor-Closed Classes

被引:21
|
作者
Geelen, Jim [1 ]
Gerards, Bert [2 ]
Whittle, Geoff [3 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Ctr Wiskunde & Informat, Amsterdam, Netherlands
[3] Victoria Univ Wellington, Sch Math & Comp Sci, Wellington, New Zealand
关键词
matroids; minors; connectivity; girth; linear codes; ML threshold function; growth rate; COMBINATORIAL GEOMETRIES; DECOMPOSITION; GF(3); GF(Q);
D O I
10.1007/s00026-015-0251-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For any minor-closed class of matroids over a fixed finite field, we state an exact structural characterization for the sufficiently connected matroids in the class. We also state a number of conjectures that might be approachable using the structural characterization.
引用
收藏
页码:107 / 123
页数:17
相关论文
共 50 条
  • [31] Polynomial bounds for centered colorings on proper minor-closed graph classes
    Pilipczuk, Michal
    Siebertz, Sebastian
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 151 : 111 - 147
  • [32] Characterization of minor-closed pseudosurfaces
    Knor, M
    ARS COMBINATORIA, 1996, 43 : 246 - 256
  • [33] Vertex-Bipartition Method for Colouring Minor-Closed Classes of Graphs
    Ding, Guoli
    Dziobiak, Stan
    COMBINATORICS PROBABILITY & COMPUTING, 2010, 19 (04): : 579 - 591
  • [34] Additive non-approximability of chromatic number in proper minor-closed classes
    Dvorak, Zdenek
    Kawarabayashi, Ken-ichi
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2023, 158 : 74 - 92
  • [35] Smaller Extended Formulations for Spanning Tree Polytopes in Minor-closed Classes and Beyond
    Aprile, Manuel
    Fiorini, Samuel
    Huynh, Tony
    Joret, Gwenael
    Wood, David R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (04):
  • [36] Densities of Minor-Closed Graph Families
    Eppstein, David
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [37] Proper minor-closed families are small
    Norine, Serguei
    Seymour, Paul
    Thomas, Robin
    Wollan, Paul
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (05) : 754 - 757
  • [38] k-apices of Minor-closed Graph Classes. II. Parameterized Algorithms
    Sau, Ignasi
    Stamoulis, Giannos
    Thilikos, Dimitrios M.
    ACM TRANSACTIONS ON ALGORITHMS, 2022, 18 (03)
  • [39] Diameter and Treewidth in Minor-Closed Graph Families
    D. Eppstein
    Algorithmica, 2000, 27 : 275 - 291
  • [40] Shortest paths in linear time on minor-closed graph classes, with an application to Steiner tree approximation
    Tazari, Siamak
    Mueller-Hannemann, Matthias
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (04) : 673 - 684