The Development of a Fault Diagnosis Model Based on Principal Component Analysis and Support Vector Machine for a Polystyrene Reactor

被引:0
|
作者
Jeong, Yeonsu [1 ]
Lee, Chang Jun [1 ]
机构
[1] Pukyong Natl Univ, Dept Safety Engn, 45 Yongso Ro, Busan 48513, South Korea
来源
KOREAN CHEMICAL ENGINEERING RESEARCH | 2022年 / 60卷 / 02期
基金
新加坡国家研究基金会;
关键词
Fault diagnosis; Principal component analysis; Support vector machine;
D O I
10.9713/kcer.2022.60.2.223
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In chemical processes, unintended faults can make serious accidents. To tackle them, proper fault diagnosis models should be designed to identify the root cause of faults. To design a fault diagnosis model, a process and its data should be analyzed. However, most previous researches in the field of fault diagnosis just handle the data set of benchmark processes simulated on commercial programs. It indicates that it is really hard to get fresh data sets on real processes. In this study, real faulty conditions of an industrial polystyrene process are tested. In this process, a runaway reaction occurred and this caused a large loss since operators were late aware of the occurrence of this accident. To design a proper fault diagnosis model, we analyzed this process and a real accident data set. At first, a mode classification model based on support vector machine (SVM) was trained and principal component analysis (PCA) model for each mode was constructed under normal operation conditions. The results show that a proposed model can quickly diagnose the occurrence of a fault and they indicate that this model is able to reduce the potential loss.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 50 条
  • [31] Fault Pattern Recognition of Bearing Based on Principal Components Analysis and Support Vector Machine
    Lu Shuang
    Yu Fujin
    ICICTA: 2009 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION, VOL II, PROCEEDINGS, 2009, : 533 - 536
  • [32] Transformer Fault Diagnosis Based on Support Vector Machine
    Zhang, Yan
    Zhang, Bide
    Yuan, Yuchun
    Pei, Zichun
    Wang, Yan
    PROCEEDINGS OF 2010 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY (ICCSIT 2010), VOL 6, 2010, : 405 - 408
  • [33] Intelligent fault diagnosis based on support vector machine
    Xia Fangfang
    Yuan Long
    Zhao Xiucai
    He Wenan
    Jia Ruisheng
    PROCEEDINGS OF 2015 IEEE 12TH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), VOL. 1, 2015, : 201 - 205
  • [34] Face detection based on Two Dimensional Principal Component Analysis and Support Vector Machine
    Zhang, Xiaoyu
    Pu, Jiexin
    Huang, Xinhan
    IEEE ICMA 2006: PROCEEDING OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS 1-3, PROCEEDINGS, 2006, : 1488 - +
  • [35] Fault Diagnosis and System Development of Power Transformer Based on Support Vector Machine
    Niu, Wu
    Xu, Liang-fa
    Wu, Ji-lin
    2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 2, 2009, : 578 - +
  • [36] Support vector classifier based on principal component analysis
    Zheng Chunhong
    Journal of Systems Engineering and Electronics, 2008, (01) : 184 - 190
  • [37] Underwater sea cucumber identification based on Principal Component Analysis and Support Vector Machine
    Qiao, Xi
    Bao, Jianhua
    Zhang, Hang
    Wan, Fanghao
    Li, Daoliang
    MEASUREMENT, 2019, 133 : 444 - 455
  • [38] Electrocardiogram beat classification based on kernel principal component analysis and support vector machine
    Liu, Tong
    Si, Yu-Juan
    Zang, Mu-Jun
    Wang, Di
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2015, 23 : 745 - 752
  • [39] Support vector classifier based on principal component analysis
    Zheng Chunhong
    Jiao Licheng
    Li Yongzhao
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2008, 19 (01) : 184 - 190
  • [40] A hybrid model for fault diagnosis using model based approaches and support vector machine
    Lee, Chang Jun
    Lee, Gibaek
    Han, Chonghun
    Yoon, En Sup
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2006, 39 (10) : 1085 - 1095