Modeling depth for nonparametric foreground segmentation using RGBD devices

被引:21
|
作者
Moya-Alcover, Gabriel [1 ]
Elgammal, Ahmed [2 ]
Jaume-i-Capo, Antoni [1 ]
Varona, Javier [1 ]
机构
[1] Univ Illes Balears, Dept Ciencies Matemat & Informat, Cra Valldemossa Km 7-5, E-07122 Palma De Mallorca, Spain
[2] Rutgers State Univ, Dept Comp Sci, 110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
关键词
Background subtraction; Non-parametric estimation; Absent depth observations; Moving object detection; RGBD dataset; BACKGROUND SUBTRACTION;
D O I
10.1016/j.patrec.2016.09.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of detecting changes in a scene and segmenting the foreground from background is still challenging, despite previous work. Moreover, new RGBD capturing devices include depth cues, which could be incorporated to improve foreground segmentation. In this work, we present a new nonparametric approach where a unified model mixes the device multiple information cues. In order to unify all the device channel cues, a new probabilistic depth data model is also proposed where we show how to handle the inaccurate data to improve foreground segmentation. A new RGBD video dataset is presented in order to introduce a new standard for comparison purposes of this kind of algorithms. Results show that the proposed approach can handle several practical situations and obtain good results in all cases. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:76 / 85
页数:10
相关论文
共 50 条
  • [21] Modeling and segmentation of floating foreground and background in videos
    Lim, Taegyu
    Han, Bohyung
    Han, Joon H.
    PATTERN RECOGNITION, 2012, 45 (04) : 1696 - 1706
  • [22] A Novel RGBD Image Superpixel Segmentation Intergrated Depth Map Quality
    Wei, Weiyi
    Chen, Wenxia
    Tao, Hong
    IFIP Advances in Information and Communication Technology, 2022, 643 IFIP : 444 - 456
  • [23] Highly sensitive and reliable foreground segmentation without depth information
    Luo, QM
    Zhou, JL
    Li, J
    Pan, HB
    Yu, SS
    7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL VII, PROCEEDINGS, 2003, : 298 - 301
  • [24] Enhanced foreground segmentation and tracking combining Bayesian background, shadow and foreground modeling
    Gallego, Jaime
    Pardas, Montse
    Haro, Gloria
    PATTERN RECOGNITION LETTERS, 2012, 33 (12) : 1558 - 1568
  • [25] RGBD IMAGE SEGMENTATION USING DEEP EDGE
    Wibisono, Jan Kristanto
    Hang, Hsueh-Ming
    2017 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS 2017), 2017, : 565 - 569
  • [26] INPAINTING ALGORITHM FOR KINECT DEPTH MAP BASED ON FOREGROUND SEGMENTATION
    Zhao Bing
    An Ping
    Liu Chao
    Yan Jichen
    Li Chunhua
    Zhang Zhaoyang
    JournalofElectronics(China), 2014, 31 (01) : 41 - 49
  • [27] Attention-Based Background/Foreground Monocular Depth Prediction Model Using Image Segmentation
    Chiang, Ting-Hui
    Chiang, Meng-Hsiu
    Tsai, Ming-Han
    Chang, Che-Cheng
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [28] Balance Clinical Measurement Using RGBD Devices
    Ayed, Ines
    Moya-Alcover, Biel
    Martinez-Bueso, Pau
    Varona, Javier
    Ghazel, Adel
    Jaume-i-Capo, Antoni
    ARTICULATED MOTION AND DEFORMABLE OBJECTS, 2016, 9756 : 125 - 134
  • [29] Automatic RGBD Object Segmentation Based on MSRM Framework Integrating Depth Value
    Li, Guoqing
    Zhang, Guoping
    Qin, Chanchan
    Lu, Anqin
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2020, 29 (7-8)
  • [30] VISUAL LOCALIZATION AND SEGMENTATION BASED ON FOREGROUND/BACKGROUND MODELING
    Wang, Hanzi
    Chin, Tat-Jun
    Suter, David
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 1158 - 1161