OPTIMUM BEAM DESIGN VIA STOCHASTIC PROGRAMMING

被引:0
|
作者
Zampachova, Eva [1 ]
Popela, Pavel [1 ]
Mrazek, Michal [2 ]
机构
[1] Brno Univ Technol, Inst Math, Fac Mech Engn, Brno 61669, Czech Republic
[2] Brno Univ Technol, Inst Solid Mech Mechatron & Biomech, Fac Mech Engn, Brno 61669, Czech Republic
关键词
optimum engineering design; stochastic programming; multi-objective programming; Monte Carlo methods; progressive hedging algorithm;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The purpose of the paper is to discuss the applicability of stochastic programming models and methods to civil engineering design problems. In cooperation with experts in civil engineering, the problem concerning an optimal design of beam dimensions has been chosen. The corresponding mathematical model involves an ODE-type constraint, uncertain parameter related to the material characteristics and multiple criteria. As a result, a multi-criteria stochastic nonlinear optimization model is obtained. It has been shown that two-stage stochastic programming offers a promising approach to solving similar problems. A computational scheme for this type of problems is proposed, including discretization methods for random elements and ODE constraint. An approximation is derived to implement the mathematical model and solve it in GAMS. The solution quality is determined by an interval estimate of the optimality gap computed by a Monte Carlo bounding technique. The parametric analysis of a multi-criteria model results in efficient frontier computation. Furthermore, a progressive hedging algorithm is implemented and tested for the selected problem in view of the future possibilities of parallel computing of large engineering problems. Finally, two discretization methods are compared by using GAMS and ANSYS.
引用
收藏
页码:571 / 582
页数:12
相关论文
共 50 条
  • [21] Hedging electricity portfolios via stochastic programming
    Fleten, SE
    Wallace, SW
    Ziemba, WT
    DECICSION MAKING UNDER UNCERTAINTY: ENERGY AND POWER, 2002, 128 : 71 - 93
  • [22] UNEMPLOYMENT PROBLEM VIA MULTISTAGE STOCHASTIC PROGRAMMING
    Kankova, Vlasta
    Chovanec, Petr
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE QUANTITATIVE METHODS IN ECONOMICS (MULTIPLE CRITERIA DECISION MAKING XIII), 2006, : 69 - 76
  • [23] Multiobjective Stochastic Programming via Multistage Problems
    Kankova, Vlasta
    PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS 2008, 2008, : 249 - 255
  • [24] OPTIMUM DESIGN OF SAW FILTERS BY LINEAR-PROGRAMMING
    RUPPEL, C
    EHRMANNFALKENAU, E
    STOCKER, HR
    VEITH, R
    IEEE TRANSACTIONS ON SONICS AND ULTRASONICS, 1985, 32 (01): : 80 - 80
  • [25] OPTIMUM DESIGN OF AN EXTENDED OCTAGONAL RING BY GOAL PROGRAMMING
    SINGH, N
    AGARWAL, SK
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 1983, 21 (06) : 891 - 898
  • [26] Optimum heat pipe design: A nonlinear programming approach
    Rajesh, VG
    Ravindran, KP
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 1997, 24 (03) : 371 - 380
  • [27] Automated optimum design of structures using genetic programming
    Yang, YW
    Soh, CK
    COMPUTERS & STRUCTURES, 2002, 80 (18-19) : 1537 - 1546
  • [28] Optimum Design of a Bar by Means of Dynamic Programming.
    Blachut, Jan
    Mechanika Teoretyczna i Stosowana, 1977, 15 (01): : 125 - 130
  • [29] Optimum heat pipe design: a nonlinear programming approach
    Dept Mech Engineering, Regional Eng College Calicut, Kerala 674-601, India
    Int Commun Heat Mass Transfer, 3 (371-380):
  • [30] ON THE OPTIMUM DESIGN OF AN 1-SECTION BEAM
    KRISHNAN, S
    SHETTY, KV
    JOURNAL OF THE AEROSPACE SCIENCES, 1959, 26 (09): : 599 - 600