Modulations of some physical parameters in a nonlinear Schrodinger type equation in fiber communications

被引:4
|
作者
Abdelwahed, H. G. [1 ,3 ]
El-Shewy, E. K. [2 ,3 ]
Alghanim, S. [1 ]
Abdelrahman, Mahmoud A. E. [4 ,5 ]
机构
[1] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities, Dept Phys, Al Kharj 11942, Saudi Arabia
[2] Taibah Univ, Coll Sci, Dept Phys, Al Madinah Al Munawarah, Saudi Arabia
[3] Mansoura Univ, Fac Sci, Theoret Phys Grp, Mansoura, Egypt
[4] Taibah Univ, Coll Sci, Dept Math, Al Madinah Al Munawarah, Saudi Arabia
[5] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
关键词
Nonlinear Schr?dinger type equation; Rational explosive structures; Unified solver method; Fiber communications; ORDER DISPERSION OPERATORS; OPTICAL SOLITONS; WAVE; BREATHER; SYSTEM;
D O I
10.1016/j.rinp.2022.105548
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hyperbolic, trigonometric, rational function solutions are obtained for a nonlinear Schrodinger type equation in an optical fiber. The numerical investigations for the examined solutions have been remarks that rational, shock, envelopes, periodic, explosive, solitonic and bright new waves may be usable in fiber communications. The presented methods are effective and powerful in the applications of comparisons in optical fibers. The optical propagating wave characteristics inside fiber boundaries are theoretically expected to become a very significantly improved by introducing fiber dispersions, nonlinear and fiber losses effects. Furthermore, both the wave amplitudes and widths may be controlled by these parameters.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Soliton interaction of a generalized nonlinear Schrodinger equation in an optical fiber
    Yan, Xue-Wei
    Chen, Yong
    APPLIED MATHEMATICS LETTERS, 2022, 125
  • [22] SOLUTIONS IN SPECTRAL GAPS FOR A NONLINEAR EQUATION OF SCHRODINGER TYPE
    JEANJEAN, L
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 112 (01) : 53 - 80
  • [23] Evaluation of the nonlinear Schrodinger equation for radio over fiber systems
    Calderon Villamizar, Cristian David
    Basto Moreno, Narly Daney
    Puerto Lopez, Karla Cecilia
    Guevara Ibarra, Dinael
    2018 IEEE 38TH CENTRAL AMERICA AND PANAMA CONVENTION (CONCAPAN XXXVIII), 2018, : 62 - 67
  • [24] Soliton dynamics in optical fiber based on nonlinear Schrodinger equation
    Mardi, Harish Abdillah
    Nasaruddin, Nasaruddin
    Ikhwan, Muhammad
    Nurmaulidar, Nurmaulidar
    Ramli, Marwan
    HELIYON, 2023, 9 (03)
  • [25] Cnoidal and solitary waves of a nonlinear Schrodinger equation in an optical fiber
    Tala-Tebue, E.
    Djoufack, Z., I
    Kamdoum-Tamo, P. H.
    Kenfack-Jiotsa, A.
    OPTIK, 2018, 174 : 508 - 512
  • [26] New type of solutions for the nonlinear Schrodinger equation in RN
    Duan, Lipeng
    Musso, Monica
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 336 : 479 - 504
  • [27] Numerical approaches for solving the nonlinear Schrodinger equation in the nonlinear fiber optics formalism
    Ibarra-Villalon, H. E.
    Pottiez, O.
    Gomez-Vieyra, A.
    Lauterio-Cruz, J. P.
    Bracamontes-Rodriguez, Y. E.
    JOURNAL OF OPTICS, 2020, 22 (04)
  • [28] A Nekhoroshev type theorem for the derivative nonlinear Schrodinger equation
    Cong, Hongzi
    Mi, Lufang
    Wang, Peizhen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (09) : 5207 - 5256
  • [29] Explicit Solutions of the Nonlinear Schrodinger-Type Equation
    Syzdykova, Arailym
    Kudaibergenov, Gaziz
    NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES, NTADES 2023, 2024, 449 : 179 - 187
  • [30] A nonlinear Gibbs-type phenomenon for the defocusing nonlinear Schrodinger equation
    DiFranco, JC
    McLaughlin, KTR
    INTERNATIONAL MATHEMATICS RESEARCH PAPERS, 2005, (08): : 403 - 459