Modulations of some physical parameters in a nonlinear Schrodinger type equation in fiber communications

被引:4
|
作者
Abdelwahed, H. G. [1 ,3 ]
El-Shewy, E. K. [2 ,3 ]
Alghanim, S. [1 ]
Abdelrahman, Mahmoud A. E. [4 ,5 ]
机构
[1] Prince Sattam bin Abdulaziz Univ, Coll Sci & Humanities, Dept Phys, Al Kharj 11942, Saudi Arabia
[2] Taibah Univ, Coll Sci, Dept Phys, Al Madinah Al Munawarah, Saudi Arabia
[3] Mansoura Univ, Fac Sci, Theoret Phys Grp, Mansoura, Egypt
[4] Taibah Univ, Coll Sci, Dept Math, Al Madinah Al Munawarah, Saudi Arabia
[5] Mansoura Univ, Fac Sci, Dept Math, Mansoura 35516, Egypt
关键词
Nonlinear Schr?dinger type equation; Rational explosive structures; Unified solver method; Fiber communications; ORDER DISPERSION OPERATORS; OPTICAL SOLITONS; WAVE; BREATHER; SYSTEM;
D O I
10.1016/j.rinp.2022.105548
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hyperbolic, trigonometric, rational function solutions are obtained for a nonlinear Schrodinger type equation in an optical fiber. The numerical investigations for the examined solutions have been remarks that rational, shock, envelopes, periodic, explosive, solitonic and bright new waves may be usable in fiber communications. The presented methods are effective and powerful in the applications of comparisons in optical fibers. The optical propagating wave characteristics inside fiber boundaries are theoretically expected to become a very significantly improved by introducing fiber dispersions, nonlinear and fiber losses effects. Furthermore, both the wave amplitudes and widths may be controlled by these parameters.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Deep Learning of the Nonlinear Schrodinger Equation in Fiber-Optic Communications
    Hager, Christian
    Pfister, Henry D.
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 1590 - 1594
  • [2] On Nonlinear Equation of Schrodinger type
    Soltanov, Kamal N.
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 923 - 932
  • [3] Some nonlinear extensions for the schrodinger equation
    Lenzi, E. K.
    de Castro, A. S. M.
    Mendes, R. S.
    CHINESE JOURNAL OF PHYSICS, 2020, 66 : 74 - 81
  • [4] Some results on discrete eigenvalues for the Stochastic Nonlinear Schrodinger Equation in fiber optics
    Prati, Laura
    Barletti, Luigi
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2018, 9 (01) : 87 - 103
  • [5] Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrodinger equation
    Henderson, KL
    Peregrine, DH
    Dold, JW
    WAVE MOTION, 1999, 29 (04) : 341 - 361
  • [7] Eigensolutions of the Schrodinger Equation with Some Physical Potentials
    Onate, C. A.
    Idiodi, J. O. A.
    CHINESE JOURNAL OF PHYSICS, 2015, 53 (07) : 1 - 10
  • [8] Some physical applications of fractional Schrodinger equation
    Guo, Xiaoyi
    Xu, Mingyu
    JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (08)
  • [9] IDENTIFICATION PROBLEM FOR NONLINEAR SCHRODINGER TYPE EQUATION
    Musayeva, M. A.
    Hashimov, S. A.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 14 (02): : 162 - 177
  • [10] The nonlinear Schrodinger equation in fiber-optic systems
    Secondini, Marco
    Forestieri, Enrico
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2008, 8 : 69 - 97