Nuclear TRADD prevents DNA damage-mediated death by facilitating non-homologous end-joining repair

被引:5
|
作者
Koo, Gi-Bang [1 ,2 ]
Ji, Jae-Hoon [3 ]
Cho, Hyeseong [1 ,2 ,3 ]
Morgan, Michael J. [4 ]
Kim, You-Sun [1 ,2 ]
机构
[1] Ajou Univ, Sch Med, Dept Biochem, Suwon 16499, Gyeonggi, South Korea
[2] Ajou Univ, Grad Sch, Dept Biomed Sci, Suwon 16499, Gyeonggi, South Korea
[3] Ajou Univ, Sch Med, Genom Instabil Res Ctr, Suwon 16499, Gyeonggi, South Korea
[4] Univ Colorado, Sch Med, Dept Pharmacol, Aurora, CO 80045 USA
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
基金
新加坡国家研究基金会;
关键词
HOMOLOGOUS RECOMBINATION; CONTRIBUTES; ACTIVATION; MUTATION; PROTEIN; RAD51; PKCS;
D O I
10.1038/s41598-017-03211-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
TNF receptor-associated death domain (TRADD) is an essential mediator of TNF receptor signaling, and serves as an adaptor to recruit other effectors. TRADD has been shown to cycle between the cytoplasm and nucleus due to its nuclear localization (NLS) and export sequences (NES). However, the underlying function of nuclear TRADD is poorly understood. Here we demonstrate that cytoplasmic TRADD translocates to DNA double-strand break sites (DSBs) during the DNA damage response (DDR). Deficiency of TRADD or its sequestration in cytosol leads to accumulation of gamma H2AX-positive foci in response to DNA damage, which is reversed by nuclear TRADD expression. TRADD facilitates non-homologous end-joining (NHEJ) by recruiting NHEJ repair factors 53BP1 and Ku70/80 complex, whereas TRADD is dispensable for homologous recombination (HR) repair. Finally, an impaired nuclear localization of TRADD triggers cell death through the persistent activation of JNK and accumulation of reactive oxygen species (ROS). Thus, our findings suggest that translocation of TRADD to DSBs into the nucleus contributes to cell survival in response to DNA damage through an activation of DNA damage repair.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Non-homologous end-joining, a sticky affair
    D C van Gent
    M van der Burg
    Oncogene, 2007, 26 : 7731 - 7740
  • [22] Non-homologous end-joining, a sticky affair
    van Gent, D. C.
    van der Burg, M.
    ONCOGENE, 2007, 26 (56) : 7731 - 7740
  • [23] Bacterial DNA repair by non-homologous end joining
    Stewart Shuman
    Michael S. Glickman
    Nature Reviews Microbiology, 2007, 5 : 852 - 861
  • [24] The endless tale of non-homologous end-joining
    Weterings, Eric
    Chen, David J.
    CELL RESEARCH, 2008, 18 (01) : 114 - 124
  • [25] The effect of HTLV-1 Tax on non-homologous end-joining DNA repair pathway
    Ducu, RI
    Marriott, S
    AIDS RESEARCH AND HUMAN RETROVIRUSES, 2005, 21 (05) : 502 - 502
  • [26] The threonine 34 phosphorylation site of Survivin is essential for the modulation of the non-homologous end-joining DNA damage repair pathway
    Weipert, F.
    Roedel, C.
    Hehlgans, S.
    Roedel, F.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2016, 192 : 134 - 134
  • [27] Canonical DNA non-homologous end-joining; capacity versus fidelity
    Shibata, Atsushi
    Jeggo, Penny A.
    BRITISH JOURNAL OF RADIOLOGY, 2020, 93 (1115):
  • [28] Reprint of "The clinical impact of deficiency in DNA non-homologous end-joining"
    Woodbine, Lisa
    Gennery, Andrew R.
    Jeggo, Penny A.
    DNA REPAIR, 2014, 17 : 9 - 20
  • [29] Non-homologous end-joining factors of Saccharomyces cerevisiae
    Dudásová, Z
    Dudás, A
    Chovanec, M
    FEMS MICROBIOLOGY REVIEWS, 2004, 28 (05) : 581 - 601
  • [30] Role of DNA homologous recombination and non-homologous end-joining in the maintenance of chromosomal integrity
    Sasaki, MS
    Sonoda, E
    Takata, M
    Takeda, S
    RADIATION RESEARCH, VOL 2, CONGRESS PROCEEDINGS, 2000, : 476 - 479