A GEOMETRIC INTERPRETATION OF THE CHARACTERISTIC POLYNOMIAL OF REFLECTION ARRANGEMENTS

被引:11
|
作者
Drton, Mathias [1 ]
Klivans, Caroline J. [2 ]
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Math & Comp Sci, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
Characteristic polynomial; Coxeter group; hyperplane arrangement; order-restricted statistical inference; reflection group;
D O I
10.1090/S0002-9939-10-10369-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider projections of points onto fundamental chambers of finite real reflection groups. Our main result shows that for groups of types An, B, and D, the coefficients of the characteristic polynomial of the reflection arrangement are proportional to the spherical volumes of the sets of points that are projected onto faces of a given dimension. We also provide strong evidence that the same connection holds for the exceptional, and thus all, reflection groups. These results naturally extend those of De Concini and Procesi, Stembridge, and Denham, which establish the relationship for 0-dimensional projections. This work is also of interest to the field of order-restricted statistical inference, where projections of random points play an important role.
引用
下载
收藏
页码:2873 / 2887
页数:15
相关论文
共 50 条
  • [31] On inductively free reflection arrangements
    Hoge, Torsten
    Roehrle, Gerhard
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 701 : 205 - 220
  • [32] REFLECTION ARRANGEMENTS ARE HEREDITARILY FREE
    Hoge, Torsten
    Roehrle, Gerhard
    TOHOKU MATHEMATICAL JOURNAL, 2013, 65 (03) : 313 - 319
  • [33] Recursively free reflection arrangements
    Muecksch, Paul
    JOURNAL OF ALGEBRA, 2017, 474 : 24 - 48
  • [34] Supersolvable restrictions of reflection arrangements
    Amend, Nils
    Hoge, Torsten
    Roehrle, Gerhard
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 127 : 336 - 352
  • [35] Nice restrictions of reflection arrangements
    Moeller, Tilman
    Roehrle, Gerhard
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (03):
  • [36] Reflection arrangements and ribbon representations
    Miller, Alexander R.
    EUROPEAN JOURNAL OF COMBINATORICS, 2014, 39 : 24 - 56
  • [37] EIGENSPACE ARRANGEMENTS OF REFLECTION GROUPS
    Miller, Alexander R.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (12) : 8543 - 8578
  • [38] Geometric interpretation of the geometric discord
    Yao, Yao
    Li, Hong-Wei
    Yin, Zhen-Qiang
    Han, Zheng-Fu
    PHYSICS LETTERS A, 2012, 376 (04) : 358 - 364
  • [39] REFLECTION GROUPS, REFLECTION ARRANGEMENTS, AND INVARIANT REAL VARIETIES
    Friedl, Tobias
    Riener, Cordian
    Sanyal, Raman
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (03) : 1031 - 1045
  • [40] The Tutte polynomial of symmetric hyperplane arrangements
    Randriamaro, Hery
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2020, 29 (03)