Hybrid Automatic Lung Segmentation on Chest CT Scans

被引:15
|
作者
Peng, Tao [1 ,8 ]
Xu, Thomas Canhao [1 ]
Wang, Yihuai [1 ]
Zhou, Hailing [2 ]
Candemir, Sema [3 ]
Zaki, Wan Mimi Diyana Wan [4 ]
Ruan, Shanq-Jang [5 ]
Wang, Jing [8 ]
Chen, Xinjian [6 ,7 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China
[2] Deakin Univ, Inst Intelligent Syst Res & Innovat, Geelong, Vic 3220, Australia
[3] Ohio State Univ, Wexner Med Ctr, Columbus, OH 43210 USA
[4] Natl Univ Malaysia, Univ Kebangsaan Malaysia, Fac Engn & Built Environm, INTEGRA, Bangi 43600, Malaysia
[5] Natl Taiwan Univ Sci & Technol, Dept Elect & Comp Engn, Taipei 106, Taiwan
[6] Soochow Univ, Sch Elect & Informat Engn, Suzhou 215006, Peoples R China
[7] Soochow Univ, State Key Lab Radiat Med & Protect, Suzhou 215123, Peoples R China
[8] Univ Texas Southwestern Med Ctr Dallas, Dept Radiat Oncol, Dallas, TX 75390 USA
基金
美国国家科学基金会;
关键词
Lung; Image segmentation; Computed tomography; Shape; Machine learning; Biomedical imaging; Flowcharts; Automatic lung segmentation; chest CT scans; principal curve; closed principal curve method; machine learning; PULMONARY NODULES; CONVEX-HULL; ALGORITHM; DIAGNOSIS; DISEASE;
D O I
10.1109/ACCESS.2020.2987925
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate lung segmentation in chest Computed Tomography (CT) scans is a challenging problem because of variations in lung volume shape, susceptibility to partial volume effects that affect thin antero-posterior junction lines, and lack of contrast between the lung and surrounding tissues. To address the need for a robust method for lung segmentation, we present a new method, called Pixel-based two-Scan Connected Component Labeling-Convex Hull-Closed Principal Curve method (PSCCL-CH-CPC), which automatically detects lung boundaries, and surpasses state-of-the-art performance. The proposed method has two main steps: 1) an image preprocessing step to extract coarse lung contours, and 2) a refinement step to refine the coarse segmentation result on the basis of the improved principal curve model and the machine learning model. Experimental results show that the proposed method has good performance, with a Dice Similarity Coefficient (DSC) as high as 98.21%. When compared with state-of-the-art methods, our proposed method achieved superior segmentation results, with an average DSC of 96.9%.
引用
下载
收藏
页码:73293 / 73306
页数:14
相关论文
共 50 条
  • [31] INTERACTIVE LUNG SEGMENTATION IN CT SCANS WITH SEVERE ABNORMALITIES
    Kockelkorn, Thessa T. J. P.
    van Rikxoort, Eva M.
    Grutters, Jan C.
    van Ginneken, Bram
    2010 7TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2010, : 564 - 567
  • [32] Automatic identification and segmentation of hemorrhagic slices and regions in CT scans
    Prakash, K. N. Bhanu
    Jianbo, H. U.
    Lan, E. N. G. Poh
    Ting, Y. I. Wee
    Morgan, T.
    Kazmierski, R.
    Hanley, F. Daniel
    Nowinski, L. Wieslaw
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2009, 285 : S98 - S98
  • [33] Automatic segmentation of pulmonary structures in chest CT images
    Yim, Y
    Hong, H
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS AND APPLICATIONS, PROCEEDINGS, 2005, 3773 : 654 - 662
  • [34] Automatic segmentation of lung fields on chest radiographic images
    Carreira, MJ
    Cabello, D
    Mosquera, A
    COMPUTERS AND BIOMEDICAL RESEARCH, 1999, 32 (03): : 283 - 303
  • [35] A Machine Learning Based Automatic Lung Lobe Segmentation in Fast Helical Free Breathing CT Scans
    Naumann, L.
    Stiehl, B.
    Lauria, M.
    Pande, R.
    Suthar, S.
    Sundaram, H.
    Narayanan, S.
    Siva, S.
    Low, D.
    Santhanam, A.
    MEDICAL PHYSICS, 2020, 47 (06) : E508 - E508
  • [36] Customized Hybrid Level Sets for Automatic Lung Segmentation in Chest X-ray Images
    Kamalakannan, S.
    Antani, S.
    Long, R.
    Thoma, G.
    MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669
  • [37] Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection
    van Rikxoort, Eva M.
    de Hoop, Bartjan
    Viergever, Max A.
    Prokop, Mathias
    van Ginneken, Bram
    MEDICAL PHYSICS, 2009, 36 (07) : 2934 - 2947
  • [38] A hybrid CNN and ensemble model for COVID-19 lung infection detection on chest CT scans
    Akl, Ahmed A.
    Hosny, Khalid M.
    Fouda, Mostafa M.
    Salah, Ahmad
    PLOS BIOLOGY, 2023, 21 (03)
  • [39] A hybrid CNN and ensemble model for COVID-19 lung infection detection on chest CT scans
    Akl, Ahmed A.
    Hosny, Khalid M.
    Fouda, Mostafa M.
    Salah, Ahmad
    PLOS ONE, 2023, 18 (03):
  • [40] Automatic Detection of 2D and 3D Lung Nodules in Chest Spiral CT Scans
    El-Baz, Ayman
    Elnakib, Ahmed
    Abou El-Ghar, Mohamed
    Gimel'farb, Georgy
    Falk, Robert
    Farag, Aly
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2013, 2013