Generalisation of the Perron-Frobenius theory to matrix pencils

被引:7
|
作者
Mehrmann, Volker [1 ]
Nabben, Reinhard [1 ]
Virnik, Elena [1 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
关键词
Perron-Frobenius theorem; matrix pencils; differential-algebraic equation; descriptor system; projector chain; tractability index; differentiation index;
D O I
10.1016/j.laa.2007.07.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new extension of the well-known Perron-Frobenius theorem to regular matrix pairs (E, A). The new extension is based on projector chains and is motivated from the solution of positive differential-algebraic systems or descriptor systems. We present several examples where the new condition holds, whereas conditions in previous literature are not satisfied. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:20 / 38
页数:19
相关论文
共 50 条
  • [41] COROLLARY OF PERRON-FROBENIUS THEOREM
    ODIARD, C
    REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1971, 5 (NR2): : 124 - 129
  • [42] Lower bound for the Perron-Frobenius degrees of Perron numbers
    Yazdi, Mehdi
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (04) : 1264 - 1280
  • [43] Noda iterations for generalized eigenproblems following Perron-Frobenius theory
    Chen, Xiao Shan
    Vong, Seak-Weng
    Li, Wen
    Xu, Hongguo
    NUMERICAL ALGORITHMS, 2019, 80 (03) : 937 - 955
  • [45] Noda iterations for generalized eigenproblems following Perron-Frobenius theory
    Xiao Shan Chen
    Seak-Weng Vong
    Wen Li
    Hongguo Xu
    Numerical Algorithms, 2019, 80 : 937 - 955
  • [46] A Perron-Frobenius theory for block matrices associated to a multiplex network
    Romance, Miguel
    Sola, Luis
    Flores, Julio
    Garcia, Esther
    Garcia del Amo, Alejandro
    Criado, Regino
    CHAOS SOLITONS & FRACTALS, 2015, 72 : 77 - 89
  • [47] Perron-Frobenius vectors and Gamma products
    Cohen-Aptel, Veronique
    Schechtman, Vadim
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (23-24) : 1003 - 1006
  • [48] Copositive matrices with Perron-Frobenius property
    Yang, Shangjun
    Xu, Changqing
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 3, 2009, : 68 - 71
  • [49] On the isolated spectrum of the Perron-Frobenius operator
    Dellnitz, M
    Froyland, G
    Sertl, S
    NONLINEARITY, 2000, 13 (04) : 1171 - 1188
  • [50] A note on Perron-Frobenius properties of Matrices
    Zheng, Yanping
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 3, 2009, : 325 - 328