Grey wolf optimizer-based learning automata for solving block matching problem

被引:6
|
作者
Betka, Abir [1 ]
Terki, Nadjiba [1 ]
Toumi, Abida [1 ]
Dahmani, Habiba [2 ]
机构
[1] Univ Biskra, Dept Elect Engn, Biskra, Algeria
[2] Univ Msila, Genie Elect Dept, Msila, Algeria
关键词
Block matching; Motion estimation; Grey wolf optimizer; Learning automata; SEARCH ALGORITHM; MOTION;
D O I
10.1007/s11760-019-01554-w
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Block matching problem is of great importance, and it is the basic element of many computer vision systems such as video compression, object tracking, motion analysis, and traffic control. This paper proposes a novel grey wolf optimizer (GWO) algorithm based on learning automata (LA) to solve block matching problem for motion estimation. Two main contributions are presented in this paper. Firstly, for improving the exploration and exploitation abilities of the GWO technique, an enhanced GWO method based on LA algorithm is proposed. LA is integrated in the GWO to learn the objective function and decide whether it is an unimodal or multimodal function. Unimodal function needs a good exploitation of promising area in the search space. However, multimodal function requires high exploration ability. The classification obtained using LA is then used to create new solutions in the appropriate areas. In the creation phase, two equations are used. The first one is based on a Gaussian distribution, to enrich the exploitation for the unimodal function, and the second is based on a random distribution to support the exploration in multimodal function. The second contribution of this paper consists of applying our enhanced GWO algorithm in block matching problem. The proposed algorithm is validated on two phases. Firstly, we evaluate our enhanced GWO algorithm on eight well-known benchmark functions. The reported results show that the enhanced GWO algorithm has the potential to improve the optimization abilities of the conventional GWOs. Then, the proposed enhanced GWO algorithm-based block matching is tested on six video sequences and compared with several state-of-the-art methods. Simulation results show the effectiveness of the proposed BM algorithm and prove the applicability of our enhanced GWO to real-world optimization problem.
引用
收藏
页码:285 / 293
页数:9
相关论文
共 50 条
  • [21] Experimental validation of adaptive grey wolf optimizer-based powertrain vibration control with backlash handling
    Yonezawa, Heisei
    Yonezawa, Ansei
    Kajiwara, Itsuro
    Mechanism and Machine Theory, 2024, 203
  • [22] An improved grey wolf optimizer for solving engineering problems
    Nadimi-Shahraki, Mohammad H.
    Taghian, Shokooh
    Mirjalili, Seyedali
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 166 (166)
  • [23] A Novel Grey Wolf Optimizer for Solving Optimization Problems
    Khaghani, Amirreza
    Meshkat, Mostafa
    Parhizgar, Mohsen
    2019 5TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS 2019), 2019,
  • [24] A Parallel Grey Wolf Optimizer combined with Opposition based learning
    Nasrabadi, Mohammad Sohrabi
    Sharafi, Yousef
    Tayari, Mohammad
    2016 1ST CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC 2016), 2016, : 18 - 23
  • [25] A Random Opposition-Based Learning Grey Wolf Optimizer
    Long, Wen
    Jiao, Jianjun
    Liang, Ximing
    Cai, Shaohong
    Xu, Ming
    IEEE ACCESS, 2019, 7 : 113810 - 113825
  • [26] Improved Grey Wolf Optimizer Based on Opposition-Based Learning
    Gupta, Shubham
    Deep, Kusum
    SOFT COMPUTING FOR PROBLEM SOLVING, 2019, 817 : 327 - 338
  • [27] A grey wolf optimizer-based support vector machine for the solubility of aromatic compounds in supercritical carbon dioxide
    Bian, Xiao-Qiang
    Zhang, Qian
    Zhang, Lu
    Chen, Ling
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2017, 123 : 284 - 294
  • [28] Transformation operators based grey wolf optimizer for travelling salesman problem
    Panwar, Karuna
    Deep, Kusum
    JOURNAL OF COMPUTATIONAL SCIENCE, 2021, 55
  • [29] A solution to resource allocation problem based on discrete grey wolf optimizer
    Xiang Z.
    Yang J.
    Li H.
    Liang X.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49 (08): : 81 - 85
  • [30] Grey Wolf Optimizer-Based Optimal Controller Tuning Method for Unstable Cascade Processes with Time Delay
    Dogruer, Tufan
    SYMMETRY-BASEL, 2023, 15 (01):