A numerical study on slip correction factor of dust particle in HTGR

被引:4
|
作者
Sun, Qi [1 ]
Xie, Feng [1 ]
Zhao, Gang [1 ]
Peng, Wei [1 ]
Wang, Jie [1 ]
Yu, Suyuan [2 ]
机构
[1] Tsinghua Univ, Minist Educ, Inst Nucl & New Energy Technol, Adv Nucl Energy Technol Cooperat Innovat Ctr,Key, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Key Lab Thermal Sci & Power Engn, Ctr Combust Energy, Minist Educ,Dept Energy & Power Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Slip velocity; Slip correction factor; Numerical simulation; Non-spherical particle; PEBBLE BED REACTORS; GRAPHITE DUST; EXPERIMENTAL PREDICTION; SPHERICAL-PARTICLES; RESUSPENSION; DEPOSITION; COEFFICIENTS; DROP; DRAG; DEPRESSURIZATION;
D O I
10.1016/j.nucengdes.2018.09.020
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The movement of dust particle has important effects on the safe operation of HTGRs. Since most of the dust particle sizes in an HTGR are on the order of microns, the influence of the slip boundary on the particle movement needs to be considered. The present study uses computational fluid dynamics (CFD) models with a slip velocity to analyze the impacts of the velocity, pressure, temperature of helium and particle diameter on the slip correction factor in an HTGR. The results show that the slip correction factor is little affected by the flow velocity and it increases noticeably as the temperature increases, while it decreases when the pressure and diameter increase. The numerical simulation results are expressed as a simple polynomial correlation for 0.01 < Kn < 0.1 and compared with experimental result in the standard condition of helium. In addition, the effects of non-spherical particles on slip correction factors are discussed to demonstrate the applicability of the spherical hypothesis for the analysis of particle movement in an HTGR.
引用
收藏
页码:31 / 39
页数:9
相关论文
共 50 条
  • [21] Direct numerical simulation of particle deposition onto a free-slip and no-slip surface
    van Haarlem, B
    Boersma, BJ
    Nieuwstadt, FTM
    PHYSICS OF FLUIDS, 1998, 10 (10) : 2608 - 2620
  • [22] Particle simulation study of dust particle dynamics in sheaths
    Smirnov, R
    Tomita, Y
    Takizuka, T
    Takayama, A
    Chutov, Y
    CONTRIBUTIONS TO PLASMA PHYSICS, 2004, 44 (1-3) : 150 - 156
  • [23] Experimental and computational study of the pyrocarbon and silicon carbide barriers of HTGR fuel particle
    Golubev, I. E.
    Kurbakov, S. D.
    Chernikov, A. S.
    ATOMIC ENERGY, 2008, 105 (01) : 18 - 31
  • [24] A numerical study on sedimentation effect of dust, smoke and traffic particle deposition in a realistic human lung
    Rahman, Md. M.
    Zhao, Ming
    Islam, Mohammad S.
    Dong, Kejun
    Saha, Suvash C.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2024, 171
  • [25] Numerical study on dust particle charging and dynamics in continuous and pulsed radio frequency argon discharges
    Missaoui, Abdelhak
    El Kaouini, Morad
    Chatei, Hassan
    CONTRIBUTIONS TO PLASMA PHYSICS, 2024, 64 (09)
  • [26] On the Slip Correction Factor for Simple Gas Molecules Diffusing in Air
    Coimbra, Kaila M. Y.
    Coimbra, Miya C. Y.
    Coimbra, Carlos F. M.
    AIAA JOURNAL, 2022, 60 (08) : 4744 - 4753
  • [27] Experimental and computational study of the pyrocarbon and silicon carbide barriers of HTGR fuel particle
    I. E. Golubev
    S. D. Kurbakov
    A. S. Chernikov
    Atomic Energy, 2008, 105 : 18 - 31
  • [28] A numerical study of helium-heated inorganic membrane reformer coupling to HTGR
    Yin H.
    Jiang S.
    Ju H.
    Zhang Y.
    Frontiers of Energy and Power Engineering in China, 2007, 1 (4): : 446 - 450
  • [29] Numerical simulations of a stick-slip spherical particle in Poiseuille flow
    Trofa, Marco
    D'Avino, Gaetano
    Maffettone, Pier Luca
    PHYSICS OF FLUIDS, 2019, 31 (08)
  • [30] Numerical analysis of the effects of particle-particle interactions and particle size on the performance of an electrodynamic dust shield
    Chesnutt, Jennifer K. W.
    Guo, Bing
    Wu, Chang-Yu
    JOURNAL OF ELECTROSTATICS, 2019, 98 : 58 - 68