STABLE, ALMOST STABLE AND ODD POINTS OF DYNAMICAL SYSTEMS

被引:2
|
作者
Pawlak, Ryszard J. [1 ]
Loranty, Anna [1 ]
机构
[1] Univ Lodz, Fac Math & Comp Sci, Banacha 22, PL-90238 Lodz, Poland
关键词
continuity; Darboux function; autonomous (nonautonomous) discrete dynamical system; (almost) stable point; odd point; ENTROPY;
D O I
10.1017/S0004972717000272
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider stable and almost stable points of autonomous and nonautonomous discrete dynamical systems defined on the closed unit interval. Our considerations are associated with chaos theory by adding an additional assumption that an entropy of a function at a given point is infinite.
引用
收藏
页码:245 / 255
页数:11
相关论文
共 50 条
  • [21] Stable index pairs for discrete dynamical systems
    Kaczynski, T
    Mrozek, M
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1997, 40 (04): : 448 - 455
  • [22] Weakly Almost Periodic Points and Some Chaotic Properties of Dynamical Systems
    Yin, Jiandong
    Zhou, Zuoling
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (09):
  • [23] Stable dissipative linear stationary dynamical scattering systems
    Arov, DZ
    Rovnyak, J
    INTERPOLATION THEORY, SYSTEMS THEORY AND RELATED TOPICS: THE HARRY DYM ANNIVERSARY VOLUME, 2002, 134 : 99 - 136
  • [24] Stable computation of probability densities for metastable dynamical systems
    Weber, Marcus
    Kube, Susanna
    Walter, Lionel
    Deuflhard, Peter
    MULTISCALE MODELING & SIMULATION, 2007, 6 (02): : 396 - 416
  • [25] A class of predefined-time stable dynamical systems
    Diego Sanchez-Torres, Juan
    Gomez-Gutierrez, David
    Lopez, Esteban
    Loukianov, Alexander G.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2018, 35 : 1 - 29
  • [26] On a class of stable random dynamical systems: Theory and applications
    Bhattacharya, R
    Majumdar, M
    JOURNAL OF ECONOMIC THEORY, 2001, 96 (1-2) : 208 - 229
  • [27] Stable Functionals of Neutral-Type Dynamical Systems
    Lukoyanov, N. Yu.
    Plaksin, A. R.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2019, 304 (01) : 205 - 218
  • [28] Poisson stable motions of monotone nonautonomous dynamical systems
    Cheban, David
    Liu, Zhenxin
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (07) : 1391 - 1418
  • [29] Learning Stable Dynamical Systems using Contraction Theory
    Blocher, Caroline
    Saveriano, Matteo
    Lee, Dongheui
    2017 14TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2017, : 124 - 129
  • [30] Fast stable parameter estimation for linear dynamical systems
    Carey, M.
    Ramsay, J. O.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 156