Distributional properties of the three-dimensional Poisson Delaunay cell

被引:13
|
作者
Muche, L
机构
[1] Freiberg Univ. Mining and Technol., Institute of Stochastic
关键词
Delaunay tessellation; Poisson Delaunay cell; Poisson point process; probability density functions; moments;
D O I
10.1007/BF02179580
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper gives distributional properties of geometrical characteristics of the Delaunay tessellation generated by a stationary Poisson point process in R(3). The considerations are based on a well-known formula given by Miles which describes the size and shape of the ''typical'' three-dimensional Poisson Delaunay cell. The results are the probability density functions for its volume, the area, and the perimeter of one of its faces, the angle spanned in a face by two of its edges, and the length of an edge. These probability density functions are given in integral form. Formulas for higher moments of these characteristics are given explicitly.
引用
收藏
页码:147 / 167
页数:21
相关论文
共 50 条
  • [21] Adaptive Algorithm for Three-Dimensional Mesh Generation Based on Constrained Delaunay
    Zhou, Longquan
    Lu, Xinming
    Wang, Hongjuan
    Zhang, Wei
    Peng, Yanjun
    Pan, Dongdong
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2018, 32 (09)
  • [22] Improving the Delaunay tessellation particle tracking algorithm in the three-dimensional field
    Zhang, Yang
    Wang, Yuan
    Jia, Pan
    MEASUREMENT, 2014, 49 : 1 - 14
  • [23] Normal forms of Poisson structures in three-dimensional space
    Lychagina, OV
    RUSSIAN MATHEMATICAL SURVEYS, 1996, 51 (04) : 741 - 742
  • [24] Local models of three-dimensional singular Poisson structures
    Wade, A
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1997, 125 (04): : 573 - 618
  • [25] Three-dimensional integrated Green functions for the Poisson equation
    Abell, D. T.
    Mullowney, P. J.
    Paul, K.
    Ranjbar, V. H.
    Qiang, J.
    Ryne, R. D.
    2007 IEEE PARTICLE ACCELERATOR CONFERENCE, VOLS 1-11, 2007, : 1765 - 1767
  • [26] An iterative DRBEM for three-dimensional Poisson's equation
    Tsai, CC
    Young, DL
    Cheng, AHD
    BOUNDARY ELEMENT TECHNOLOGY XIV, 2001, 3 : 323 - 332
  • [27] Poisson geometry of PI three-dimensional Sklyanin algebras
    Walton, Chelsea
    Wang, Xingting
    Yakimov, Milen
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 118 (06) : 1471 - 1500
  • [28] Statistical topology of three-dimensional Poisson-Voronoi cells and cell boundary networks
    Lazar, Emanuel A.
    Mason, Jeremy K.
    MacPherson, Robert D.
    Srolovitz, David J.
    PHYSICAL REVIEW E, 2013, 88 (06):
  • [29] Three-dimensional properties of diseased and normal RPE cell sheets
    Ziesel, Alison C.
    Rashid, Alia
    Bhatia, Shagun
    Mazzitello, Karina
    Chrenek, Micah A.
    Zhang, Qing
    Boatright, Jeffrey H.
    Grossniklaus, Hans E.
    Jiang, Yi
    Nickerson, J. M.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (07)
  • [30] Generation of three-dimensional delaunay meshes from weakly structured and inconsistent data
    V. A. Garanzha
    L. N. Kudryavtseva
    Computational Mathematics and Mathematical Physics, 2012, 52 : 427 - 447