EXISTENCE OF WEAK SOLUTIONS FOR PARTICLE-LADEN FLOW WITH SURFACE TENSION

被引:0
|
作者
Taranets, Roman M. [1 ,2 ,3 ]
Wong, Jeffrey T. [2 ,4 ]
机构
[1] NASU, Inst Appl Math & Mech, 1 Dobrovolskogo Str, UA-84100 Sloviansk, Ukraine
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] VasylStus Donetsk Natl Univ, 21,600 Richya Str, UA-21021 Vinnytsia, Ukraine
[4] Duke Univ, Dept Math, Durham, NC 27708 USA
关键词
Fourth-order degenerate parabolic equations; existence of weak solutions; thin liquid films; suspensions; multiphase flows; THIN VISCOUS FILMS; LIQUID-FILMS; NONNEGATIVE SOLUTIONS; EQUATIONS; DYNAMICS; APPROXIMATION; RESUSPENSION; CONVECTION; EVOLUTION; SYSTEMS;
D O I
10.3934/dcds.2018217
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of solutions for a coupled system modeling the flow of a suspension of fluid and negatively buoyant non-colloidal particles in the thin film limit. The equations take the form of a fourth-order nonlinear degenerate parabolic equation for the film height h coupled to a second-order degenerate parabolic equation for the particle density psi. We prove the existence of physically relevant solutions, which satisfy the uniform bounds 0 <= psi/h <= 1 and h >= 0.
引用
收藏
页码:4979 / 4996
页数:18
相关论文
共 50 条
  • [41] Experimental study on particle distribution of a particle-laden jet into a supersonic flow
    Yang, Pengnian
    Xia, Zhixun
    Duan, Yifan
    Feng, Yunchao
    Zhao, Libei
    Ma, Likun
    CHEMICAL ENGINEERING JOURNAL, 2025, 505
  • [42] QUANTIFICATION OF PARTICLE AND FLUID SCALES IN PARTICLE-LADEN TURBULENT CHANNEL FLOW
    Marchioli, Cristian
    Picciotto, Maurizio
    Soldati, Alfredo
    PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE, VOL 1, PTS A AND B, 2006, : 1683 - 1690
  • [43] Particle-laden jets: particle distribution and back-reaction on the flow
    Picano, F.
    Sardina, G.
    Gualtieri, P.
    Casciola, C. M.
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): PARTICLES IN TURBULENCE, TRANSPORT PROCESSES AND MIXING, 2011, 318
  • [44] SHOCK SOLUTIONS FOR HIGH CONCENTRATION PARTICLE-LADEN THIN FILMS
    Wang, Li
    Bertozzi, Andrea L.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2014, 74 (02) : 322 - 344
  • [45] Asymptotic solutions of effective thermal conductivity of particle-laden polymers
    Karayacoubian, P.
    Bahrami, M.
    Culham, J. R.
    Proceedings of the ASME Heat Transfer Division 2005, Vol 1, 2005, 376-1 : 837 - 844
  • [46] Oscillations of a particle-laden fountain
    Alaoui, Chaimae
    Gay, Aurelien
    Vidal, Valerie
    PHYSICAL REVIEW E, 2022, 106 (02)
  • [47] Particle-laden tubeless siphon
    Wang, J
    Joseph, DD
    JOURNAL OF FLUID MECHANICS, 2003, 480 : 119 - 128
  • [48] EXPERIMENTAL CHARACTERIZATION OF PARTICLE-LADEN AIR FLOW IN A HORIZONTAL PIPE
    Dai, Y.
    Khan, T. S.
    Alshehhi, M. S.
    Khezzar, L.
    PROCEEDINGS OF THE ASME/JSME/KSME JOINT FLUIDS ENGINEERING CONFERENCE, 2015, VOL 1A, SYMPOSIA, PT 2, 2016,
  • [49] Temperature statistics in particle-laden turbulent homogeneous shear flow
    Shotorban, B
    Mashayek, F
    Pandya, RVR
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2003, 29 (08) : 1333 - 1353
  • [50] Identification of particle-laden flow features from wavelet decomposition
    Jackson, A.
    Turnbull, B.
    PHYSICA D-NONLINEAR PHENOMENA, 2017, 361 : 12 - 27