Atomic, molecular, charge manipulation and application of atomic force microscopy

被引:5
|
作者
Li Yan [1 ,2 ]
Zheng Qi [1 ,2 ]
Chang Xiao [1 ,2 ]
Huang Li [1 ,2 ]
Lin Xiao [1 ,2 ]
Cheng Zhi-Hai [3 ]
Gao Hong-Jun [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Phys, Nanoscale Phys & Devices Lab, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[3] Renmin Univ China, Dept Phys, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
atomic force microscopy; atomic/molecular manipulations; manipulation mechanism; manipulation of charge state; atom identification; CHEMICAL-IDENTIFICATION; TUNNELING MICROSCOPY; NANOMETER-SCALE; BOND FORMATION; CONDUCTANCE; SURFACE; RESOLUTION; HYDROGEN; DYNAMICS; SILICON;
D O I
10.7498/aps.70.20202129
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this review paper, we introduce representative research work on single atomic/molecular manipulations by atomic force microscopy (AFM), which possesses extraordinary ability to resolve atomic and chemical bonds, and charge density distributions of samples. We first introduce the working principle of AFM, then focus on recent advances in atom manipulation at room temperature, force characterization in the process of atom/molecule manipulation, and charge manipulation on insulating substrates. This review covers the following four aspects: 1) the imaging principle of AFM and the atomic characterization of typical molecules such as pentacene and C-60; 2) the mechanical manipulation and atomic recognition capability of AFM at room temperature; 3) the characterization of forces in the process of surface isomerization and adsorption configuration changes of the molecules; 4) the manipulation of charge states and the characterization of single and multiple molecules on insulating substrates. The capability of manipulation by AFM in these fields widens the range in atomic/molecular manipulation, which can provide new and well-established schemes for the analysis and precise control of the manipulation process, and can further contribute to the construction of nanoscale devices, such as "molecular switches" and storage components.
引用
收藏
页数:23
相关论文
共 164 条
  • [41] Pb/Si(111) investigation at the ultralow-coverage range
    GomezRodriguez, JM
    Veuillen, JY
    Cinti, RC
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (02): : 1005 - 1009
  • [42] Atomic Force Microscopy for Molecular Structure Elucidation
    Gross, Leo
    Schuler, Bruno
    Pavlicek, Niko
    Fatayer, Shadi
    Majzik, Zsolt
    Moll, Nikolaj
    Pena, Diego
    Meyer, Gerhard
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (15) : 3888 - 3908
  • [43] Investigating atomic contrast in atomic force microscopy and Kelvin probe force microscopy on ionic systems using functionalized tips
    Gross, Leo
    Schuler, Bruno
    Mohn, Fabian
    Moll, Nikolaj
    Pavlicek, Niko
    Steurer, Wolfram
    Scivetti, Ivan
    Kotsis, Konstantinos
    Persson, Mats
    Meyer, Gerhard
    [J]. PHYSICAL REVIEW B, 2014, 90 (15):
  • [44] Bond-Order Discrimination by Atomic Force Microscopy
    Gross, Leo
    Mohn, Fabian
    Moll, Nikolaj
    Schuler, Bruno
    Criado, Alejandro
    Guitian, Enrique
    Pena, Diego
    Gourdon, Andre
    Meyer, Gerhard
    [J]. SCIENCE, 2012, 337 (6100) : 1326 - 1329
  • [45] Gross L, 2010, NAT CHEM, V2, P821, DOI [10.1038/NCHEM.765, 10.1038/nchem.765]
  • [46] The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy
    Gross, Leo
    Mohn, Fabian
    Moll, Nikolaj
    Liljeroth, Peter
    Meyer, Gerhard
    [J]. SCIENCE, 2009, 325 (5944) : 1110 - 1114
  • [47] Measuring the Charge State of an Adatom with Noncontact Atomic Force Microscopy
    Gross, Leo
    Mohn, Fabian
    Liljeroth, Peter
    Repp, Jascha
    Giessibl, Franz J.
    Meyer, Gerhard
    [J]. SCIENCE, 2009, 324 (5933) : 1428 - 1431
  • [48] Analysis of STM images with pure and CO-functionalized tips: A first-principles and experimental study
    Gustafsson, Alexander
    Okabayashi, Norio
    Peronio, Angelo
    Giessibl, Franz J.
    Paulsson, Magnus
    [J]. PHYSICAL REVIEW B, 2017, 96 (08)
  • [49] Hahn JR, 2001, PHYS REV LETT, V87, DOI [10.1103/PhysRevLett.87.166102, 10.1103/PhysRevLett.87.196102]
  • [50] The London - Van Der Waals attraction between spherical particles
    Hamaker, HC
    [J]. PHYSICA, 1937, 4 : 1058 - 1072