Numerical solutions of Fourier's law involving fractional derivatives with bi-order

被引:3
|
作者
Gomez-Aguilar, J. F. [1 ]
Atangana, A. [2 ]
Escobar-Jimenez, R. F. [3 ]
机构
[1] Tecnol Nacl Mexico, CONACyT Ctr Nacl Invest & Desarrollo Tecnol, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[2] Univ Free State, Fac Nat & Agr Sci, Inst Groundwater Studies, ZA-9300 Bloemfontein, South Africa
[3] Tecnol Nacl Mexico, Ctr Nacl Invest & Desarrollo Tecnol, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
关键词
Anomalous diffusion; Fractional heat transfer model; Iterative method; Bi-order fractional derivative; Non-Fourier heat conduction; HEAT-CONDUCTION EQUATION; HAVRILIAK-NEGAMI MEDIA; CALCULUS; THERMOELASTICITY; CYLINDER; MODEL;
D O I
10.24200/sci.2017.4342
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present an alternative representation of the fractional spacetime Fourier's law equation using the concept of derivative with two fractional orders a and beta. The new definitions are based on the concept of power law and the generalized Mittag-Leffler function, where the first fractional order is incorporated into the power law function, and the second fractional order is the generalized Mittag-Leffler function. The new approach is capable of considering media with two different layers, scales, and properties. The generalization of this equation exhibits different cases of anomalous behaviors and Non-Fourier heat conduction processes. Numerical solutions are obtained using an iterative scheme. (C) 2018 Sharif University of Technology. All rights reserved.
引用
收藏
页码:2175 / 2185
页数:11
相关论文
共 50 条
  • [41] Analytical and numerical solutions of electrical circuits described by fractional derivatives
    Gomez-Aguilar, J. F.
    Yepez-Martinez, H.
    Escobar-Jimenez, R. F.
    Astorga-Zaragoza, C. M.
    Reyes-Reyes, J.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (21-22) : 9079 - 9094
  • [42] REAL ANALYTICITY OF SOLUTIONS TO SCHRODINGER EQUATIONS INVOLVING A FRACTIONAL LAPLACIAN AND OTHER FOURIER MULTIPLIERS
    Dall'Acqua, A.
    Fournais, S.
    Sorensen, T. Ostergaard
    Stockmeyer, E.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 600 - 609
  • [43] Numerical Solutions of a Variable-Order Fractional Financial System
    Ma, Shichang
    Xu, Yufeng
    Yue, Wei
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [44] Robust optical flow estimation involving exponential fractional-order derivatives
    Lavin-Delgado, J. E.
    Solis-Perez, J. E.
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    OPTIK, 2020, 202 (202):
  • [45] Monotone Iterative Methods of Positive Solutions for Fractional Differential Equations Involving Derivatives
    Zhang, Xiaoping
    Sun, Yongping
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [46] Generalized Solutions of the Cauchy Problem Involving 'I.-Caputo Fractional Derivatives
    Taqbibt, A.
    El Bezdaoui, L.
    El Omari, M.
    Chadli, L. S.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42 : 15 - 15
  • [47] Fractional powers of the noncommutative Fourier's law by the S-spectrum approach
    Colombo, Fabrizio
    Mongodi, Samuele
    Peloso, Marco
    Pinton, Stefano
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (05) : 1662 - 1686
  • [48] Classification of Solutions for Mixed Order Conformally Invariant Systems Involving Fractional Laplacian
    Kong, Ruixue
    Niu, Miaomiao
    Wang, Heming
    Zhou, Xiaohui
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (03)
  • [49] Multiple positive solutions to singular fractional differential equations with integral boundary conditions involving p - q-order derivatives
    Wang, Han
    Jiang, Jiqiang
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01):
  • [50] New Existence Results for Solutions of SVPs for Higher Order IFDEs Involving Riemann-Liouville Type Hadamard Fractional Derivatives
    Liu, Yuji
    Yang, Xiaohui
    FILOMAT, 2018, 32 (11) : 3957 - 3991