A mixed finite element approximation for Darcy-Forchheimer flows of slightly compressible fluids

被引:3
|
作者
Thinh Kieu [1 ]
机构
[1] Univ North Georgia, Dept Math, 3820 Mundy Mill Rd, Oakwood, GA 30566 USA
关键词
Porous media; Error analysis; Slightly compressible fluid; Dependence on parameters; Numerical analysis; POROUS-MEDIA; STRUCTURAL STABILITY; PARABOLIC EQUATION; MODEL;
D O I
10.1016/j.apnum.2017.05.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the generalized Forchheimer flows for slightly compressible fluids in porous media. Using Muskat's and Ward's general form of Forchheimer equations, we describe the flow of a single-phase fluid in R-d, d >= 2 by a nonlinear degenerate system of density and momentum. A mixed finite element method is proposed for the approximation of the solution of the above system. The stability of the approximations are proved; the error estimates are derived for the numerical approximations for both continuous and discrete time procedures. The continuous dependence of numerical solutions on physical parameters are demonstrated. Experimental studies are presented regarding convergence rates and showing the dependence of the solution on the physical parameters. Published by Elsevier B.V. on behalf of IMACS.
引用
收藏
页码:141 / 164
页数:24
相关论文
共 50 条
  • [1] Analysis of Expanded Mixed Finite Element Methods for the Generalized Forchheimer Flows of Slightly Compressible Fluids
    Kieu, Thinh T.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2016, 32 (01) : 60 - 85
  • [2] A multipoint flux mixed finite element method for the compressible Darcy-Forchheimer models
    Xu, Wenwen
    Liang, Dong
    Rui, Hongxing
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 315 : 259 - 277
  • [3] An analysis of a mixed finite element method for a Darcy-Forchheimer model
    Salas, Jose J.
    Lopez, Hilda
    Molina, Brigida
    MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (9-10) : 2325 - 2338
  • [4] Generalized multiscale approximation of a multipoint flux mixed finite element method for Darcy-Forchheimer model
    He, Zhengkang
    Chung, Eric T.
    Chen, Jie
    Chen, Zhangxin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 391
  • [5] Multigrid Methods for a Mixed Finite Element Method of the Darcy-Forchheimer Model
    Huang, Jian
    Chen, Long
    Rui, Hongxing
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (01) : 396 - 411
  • [6] Mixed Generalized Multiscale Finite Element Method for Darcy-Forchheimer Model
    Spiridonov, Denis
    Huang, Jian
    Vasilyeva, Maria
    Huang, Yunqing
    Chung, Eric T.
    MATHEMATICS, 2019, 7 (12)
  • [7] A Block-Centered Finite Difference Method for Slightly Compressible Darcy-Forchheimer Flow in Porous Media
    Rui, Hongxing
    Pan, Hao
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (01) : 70 - 92
  • [8] A Mixed Finite Element and Characteristic Mixed Finite Element for Incompressible Miscible Darcy-Forchheimer Displacement and Numerical Analysis
    Yuan, Yirang
    Li, Changfeng
    Sun, Tongjun
    Yang, Qing
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (05) : 2026 - 2042
  • [9] A MIXED FINITE ELEMENT AND CHARACTERISTIC MIXED FINITE ELEMENT FOR INCOMPRESSIBLE MISCIBLE DARCY-FORCHHEIMER DISPLACEMENT AND NUMERICAL ANALYSIS
    袁益让
    李长峰
    孙同军
    杨青
    Acta Mathematica Scientia, 2023, 43 (05) : 2026 - 2042
  • [10] A Mixed Finite Element and Characteristic Mixed Finite Element for Incompressible Miscible Darcy-Forchheimer Displacement and Numerical Analysis
    Yirang Yuan
    Changfeng Li
    Tongjun Sun
    Qing Yang
    Acta Mathematica Scientia, 2023, 43 : 2026 - 2042