Algorithms for the computation of the pseudospectral radius and the numerical radius of a matrix

被引:33
|
作者
Mengi, E [1 ]
Overton, ML [1 ]
机构
[1] NYU, Courant Inst Math Sci, Dept Comp Sci, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
pseudospectrum; field of values; robust stability; epsilon-pseudospectral radius; numerical radius; quadratically convergent; backward stability; singular pencil; Hamiltonian matrix; symplectic pencil;
D O I
10.1093/imanum/dri012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two useful measures of the robust stability of the discrete-time dynamical system x(k+1) = Ax(k) are the epsilon-pseudospectral radius and the numerical radius of A. The epsilon-pseudospectral radius of A is the largest of the moduli of the points in the epsilon-pseudospectrum of A, while the numerical radius is the largest of the moduli of the points in the field of values. We present globally convergent algorithms for computing the epsilon-pseudospectral radius and the numerical radius. For the former algorithm, we discuss conditions under which it is quadratically convergent and provide a detailed accuracy analysis giving conditions under which the algorithm is backward stable. The algorithms are inspired by methods of Byers, Boyd-Balakrishnan, He-Watson and Burke-Lewis-Overton for related problems and depend on computing eigenvalues of symplectic pencils and Hamiltonian matrices.
引用
收藏
页码:648 / 669
页数:22
相关论文
共 50 条
  • [11] MATRIX YOUNG NUMERICAL RADIUS INEQUALITIES
    Salemi, Abbas
    Sheikhhosseini, Alemeh
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (03): : 783 - 791
  • [12] On the numerical radius of an upper triangular operator matrix
    Naimi, Mehdi
    Benharrat, Mohammed
    TAMKANG JOURNAL OF MATHEMATICS, 2024, 55 (02): : 195 - 201
  • [13] ESTIMATES FOR THE NUMERICAL RADIUS AND THE SPECTRAL RADIUS OF THE FROBENIUS COMPANION MATRIX AND BOUNDS FOR THE ZEROS OF POLYNOMIALS
    Abu-Omar, Amer
    Kittaneh, Fuad
    ANNALS OF FUNCTIONAL ANALYSIS, 2014, 5 (01): : 56 - 62
  • [14] Inequalities for Numerical Radius and Spectral Radius
    Al-Hawari, M.
    Barahmeh, Sa'ed M.
    JOURNAL OF ADVANCED MATHEMATICS AND APPLICATIONS, 2016, 5 (02) : 131 - 133
  • [15] (ε, A)-approximate numerical radius orthogonality and numerical radius derivative
    Sen, Jeet
    Paul, Kallol
    MATHEMATICA SLOVACA, 2023, 73 (01) : 147 - 158
  • [16] SOME INEQUALITIES FOR THE NUMERICAL RADIUS AND RHOMBIC NUMERICAL RADIUS
    Bajmaeh, Akram Babri
    Omidvar, Mohsen Erfanian
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2018, 42 (04): : 569 - 577
  • [17] Polytope norms and related algorithms for the computation of the joint spectral radius
    Guglielmi, Nicola
    Zennaro, Marino
    2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 3007 - 3012
  • [18] A relaxation scheme for computation of the joint spectral radius of matrix sets
    Kozyakin, Victor
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (02) : 185 - 201
  • [19] COMPUTATION OF THE STRUCTURED STABILITY RADIUS VIA MATRIX SIGN FUNCTION
    FILBIR, FD
    SYSTEMS & CONTROL LETTERS, 1994, 22 (05) : 341 - 349
  • [20] Condition pseudospectral radius of bounded linear operators
    Kumar, G. Krishna
    Kulkarni, S. H.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (01): : 27 - 41