Review and Development of Anode Electrocatalyst Carriers for Direct Methanol Fuel Cell

被引:33
|
作者
Chen, Fei [1 ,2 ,3 ]
Sun, Yaxin [1 ,2 ,3 ]
Li, Huiyu [1 ,2 ,3 ]
Li, Congju [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Energy & Environm Engn, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Beijing Key Lab Resource Oriented Treatment Ind P, Beijing 100083, Peoples R China
[3] Beijing Univ, Energy Conservat & Environm Protect Engn Res Ctr, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
anode electrocatalyst carriers; direct methanol fuel cells; self-supporting carriers; REDUCED GRAPHENE OXIDE; ORDERED MESOPOROUS CARBON; HIGH-PERFORMANCE CATALYST; PT-RU ALLOY; TITANIUM NITRIDE; OXIDATION REACTION; PLATINUM NANOPARTICLES; TUNGSTEN TRIOXIDE; IN-SITU; EFFICIENT ELECTRODE;
D O I
10.1002/ente.202101086
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Direct methanol fuel cell (DMFC) can be used as a promising portable power device due to its excellent energy conversion efficiency and low pollutant emissions. The performance of DMFC largely depends on the anode electrocatalyst for methanol oxidation reaction (MOR). As an important part of the electrocatalyst, the carrier greatly affects the activity and stability of the electrocatalyst. Herein, the research progress of carbonaceous carriers (such as activated carbon, nanostructured carbon), noncarbonaceous carriers (metal compounds), and conducting polymers in DMFC is reviewed. Furthermore, an overview of the development of self-supporting carriers for flexible DMFC electronics is presented. Its role as the most ideal DMFC carrier in the future provides new ideas for the challenges and development of the commercialization of flexible DMFC.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Recent Development of Anode Electrocatalysts for Direct Methanol Fuel Cells
    Luo Yuanlai
    Liang Zhenxing
    Liao Shijun
    CHINESE JOURNAL OF CATALYSIS, 2010, 31 (02) : 141 - 149
  • [22] Composite anode catalyst layer for direct methanol fuel cell
    Liu, Peng
    Yin, Ge-Ping
    Du, Chun-Yu
    ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (10) : 1471 - 1473
  • [23] A physical model of Direct Methanol Fuel Cell anode impedance
    Zago, M.
    Casalegno, A.
    JOURNAL OF POWER SOURCES, 2014, 248 : 1181 - 1190
  • [24] The Catalysis of NAD~+ on Methanol Anode Oxidation Electrode for Direct Methanol Fuel Cell
    张萍
    Journal of Wuhan University of Technology(Materials Science), 2004, (04) : 23 - 25
  • [25] Rate expression for electrochemical oxidation of methanol on a direct methanol fuel cell anode
    Vidakovic, T
    Christov, M
    Sundmacher, K
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2005, 580 (01) : 105 - 121
  • [26] A tubular direct methanol fuel cell with Ti mesh anode
    Shao, Zhi-Gang
    Lin, Wen-Feng
    Zhu, Fuyun
    Christensen, Paul A.
    Zhang, Huamin
    Yi, Baolian
    JOURNAL OF POWER SOURCES, 2006, 160 (02) : 1003 - 1008
  • [27] Reactivity descriptors for direct methanol fuel cell anode catalysts
    Ferrin, Peter
    Nilekar, Anand Udaykumar
    Greeley, Jeff
    Mavrikakis, Manos
    Rossmeisl, Jan
    SURFACE SCIENCE, 2008, 602 (21) : 3424 - 3431
  • [28] Effect of the Anode Structure on the Stability of a Direct Methanol Fuel Cell
    Jing, Fenning
    Sun, Ruili
    Wang, Suli
    Sun, Hai
    Sun, Gongquan
    ENERGY & FUELS, 2020, 34 (03) : 3850 - 3857
  • [29] Nano-composite of PtRu alloy electrocatalyst and electronically conducting polymer for use as the anode in a direct methanol fuel cell
    Choi, JH
    Park, KW
    Lee, HK
    Kim, YM
    Lee, JS
    Sung, YE
    ELECTROCHIMICA ACTA, 2003, 48 (19) : 2781 - 2789
  • [30] Status of the development of a direct methanol fuel cell
    Baldauf, M
    Preidel, W
    JOURNAL OF POWER SOURCES, 1999, 84 (02) : 161 - 166