Mode-mismatched confocal thermal-lens microscope with collimated probe beam

被引:16
|
作者
Cabrera, Humberto [1 ,2 ]
Korte, Dorota [3 ]
Franko, Mladen [3 ]
机构
[1] Abdus Salaam Int Ctr Theoret Phys, SPIE ICTP Anchor Res Lab, Trieste, Italy
[2] Inst Venezolano Invest Cient IVIC, Ctr Multidisciplinartio Ciencias, Merida 5101, Venezuela
[3] Univ Nova Gorica, Environm Res Lab, Nova Gorica 5000, Slovenia
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2015年 / 86卷 / 05期
关键词
SPECTROMETRIC DETECTION; SEPARATION;
D O I
10.1063/1.4919735
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We report a thermal lens microscope (TLM) based on an optimized mode-mismatched configuration. It takes advantage of the coaxial counter propagating tightly focused excitation and collimated probe beams, instead of both focused at the sample, as it is in currently known TLM setups. A simple mathematical model that takes into account the main features of the instrument is presented. The confocal detection scheme and the introduction of highly collimated probe beam allow enhancing the versatility, limit of detection (LOD), and sensitivity of the instrument. The theory is experimentally verified measuring ethanol's absorption coefficient at 532.8 nm. Additionally, the presented technique is applied for detection of ultra-trace amounts of Cr(III) in liquid solution. The achieved LOD is 1.3 ppb, which represents 20-fold enhancement compared to transmission mode spectrometric techniques and a 7.5-fold improvement compared to previously reported methods for Cr(III) based on thermal lens effect. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Comparison between mode-matched and mode-mismatched thermal lens methods for absorption measurements in liquids
    Aristides, Marcano
    Humberto, Cabrera W.
    Marisel, Diaz B.
    RIAO/OPTILAS 2007, 2008, 992 : 1189 - +
  • [22] Thermal Diffusivity Dependence with Highly Concentrated Graphene Oxide/Water Nanofluids by Mode-Mismatched Dual-Beam Thermal Lens Technique
    J. L. Jiménez-Pérez
    G. López-Gamboa
    J. F. Sánchez-Ramírez
    Z. N. Correa-Pacheco
    A. Netzahual‑Lopantzi
    A. Cruz-Orea
    International Journal of Thermophysics, 2021, 42
  • [23] Study of thermal parameters of polymethyl methacrylate in different concentrations by laser mode-mismatched thermal lens spectroscopy
    Mohebbifar, M. R.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2021, 127 (07):
  • [24] Thermal Diffusivity Dependence with Highly Concentrated Graphene Oxide/Water Nanofluids by Mode-Mismatched Dual-Beam Thermal Lens Technique
    Jimenez-Perez, J. L.
    Lopez-Gamboa, G.
    Sanchez-Ramirez, J. F.
    Correa-Pacheco, Z. N.
    Netzahual-Lopantzi, A.
    Cruz-Orea, A.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2021, 42 (07)
  • [25] Study of thermal parameters of polymethyl methacrylate in different concentrations by laser mode-mismatched thermal lens spectroscopy
    M. R. Mohebbifar
    Applied Physics A, 2021, 127
  • [26] High-sensitivity absorption measurement in water and glass samples using a mode-mismatched pump-probe thermal lens method
    Marcano, A
    Loper, C
    Melikechi, N
    APPLIED PHYSICS LETTERS, 2001, 78 (22) : 3415 - 3417
  • [27] Analytical solution for mode-mismatched thermal lens spectroscopy with sample-fluid heat coupling
    Malacarne, Luis C.
    Astrath, Nelson G. C.
    Pedreira, Paulo R. B.
    Mendes, Renio S.
    Baesso, Mauro L.
    Joshi, Prakash R.
    Bialkowski, Stephen E.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (05)
  • [28] MODE-MISMATCHED LASER-INDUCED THERMAL LENS EFFECT DETECTION VIA SPATIAL FOURIER-ANALYSIS OF BEAM PROFILES
    POWER, JF
    SALIN, ED
    ANALYTICAL CHEMISTRY, 1988, 60 (09) : 838 - 842
  • [29] An analytical model for top-hat long transient mode-mismatched thermal lens spectroscopy
    Sabaeian, M.
    Rezaei, H.
    JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2016, 11
  • [30] Z-scan model for Laguerre-Gaussian excitation in mode-mismatched thermal lens spectrometry
    Rahman, Abdul
    Niemela, Joseph
    Cabrera, Humberto
    APPLIED OPTICS, 2023, 62 (31) : 8286 - 8291