A new solvability criterion for finite groups

被引:20
|
作者
Dolfi, Silvio [1 ]
Guralnick, Robert M. [2 ]
Herzog, Marcel [3 ]
Praeger, Cheryl E. [4 ]
机构
[1] Univ Firenze, Dipartimento Matemat U Dini, I-50134 Florence, Italy
[2] Univ So Calif, Dept Math, Los Angeles, CA USA
[3] Tel Aviv Univ, Dept Math, Raymond & Beverly Sackler Fac Exact Sci, IL-69978 Tel Aviv, Israel
[4] Univ Western Australia, Sch Math & Stat, Ctr Math Symmetry & Computat, Western Australia 6009, Australia
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
ELEMENTS;
D O I
10.1112/jlms/jdr041
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1968, John Thompson proved that a finite group G is solvable if and only if every 2-generator subgroup of G is solvable. In this paper, we prove that solvability of a finite group G is guaranteed by a seemingly weaker condition: G is solvable if, for all conjugacy classes C and D of G consisting of elements of prime power order, there exist x is an element of C and y is an element of D for which << x, y >> is solvable. We also prove the following property of finite nonabelian simple groups, which is the key tool for our proof of the solvability criterion: if G is a finite nonabelian simple group, then there exist two prime divisors a and b of vertical bar G vertical bar such that, for all elements x, y is an element of G with vertical bar x vertical bar=a and vertical bar y vertical bar=b, the subgroup << x, y >> is not solvable. Further, using a recent result of Guralnick and Malle, we obtain a similar membership criterion for any family of finite groups closed under forming subgroups, quotients and extensions.
引用
收藏
页码:269 / 281
页数:13
相关论文
共 50 条
  • [31] A NEW CRITERION FOR SOLVABILITY OF A FINITE GROUP BY THE SUM OF ORDERS OF NON-NORMAL SUBGROUPS
    Cui, Liang
    Meng, Wei
    Lu, Jiakuan
    Zheng, Weicheng
    COLLOQUIUM MATHEMATICUM, 2023, 174 (02) : 169 - 176
  • [32] A simplicity criterion for finite groups
    Deng, HW
    Shi, WJ
    JOURNAL OF ALGEBRA, 1997, 191 (01) : 371 - 381
  • [33] A nilpotency criterion for finite groups
    Tarnauceanu, M.
    ACTA MATHEMATICA HUNGARICA, 2018, 155 (02) : 499 - 501
  • [34] A criterion for nilpotency in finite groups
    Li, Binbin
    Lu, Jiakuan
    Pang, Linna
    Zhang, Boru
    ARCHIV DER MATHEMATIK, 2024, 122 (01) : 13 - 16
  • [35] A nilpotency criterion for finite groups
    M. Tărnăuceanu
    Acta Mathematica Hungarica, 2018, 155 : 499 - 501
  • [36] A criterion for nilpotency in finite groups
    Binbin Li
    Jiakuan Lu
    Linna Pang
    Boru Zhang
    Archiv der Mathematik, 2024, 122 : 13 - 16
  • [37] A solubility criterion for finite groups
    Bernhard Amberg
    Lev Kazarin
    Archiv der Mathematik, 2005, 85 : 9 - 14
  • [38] A solubility criterion for finite groups
    Amberg, B
    Kazarin, L
    ARCHIV DER MATHEMATIK, 2005, 85 (01) : 9 - 14
  • [39] TRANSVERSALS, COMMUTATORS AND SOLVABILITY IN FINITE-GROUPS
    NIEMENMAA, M
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1995, 9A (01): : 203 - 208
  • [40] Invariant Sylow subgroups and solvability of finite groups
    Antonio Beltrán
    Archiv der Mathematik, 2016, 106 : 101 - 106