COMPACTNESS OF THE SET OF SOLUTIONS TO ELLIPTIC EQUATIONS IN 2 DIMENSIONS

被引:0
|
作者
Bahoura, Samy Skander [1 ]
机构
[1] Pierre & Marie Curie Univ, Dept Math, 4 Pl Jussieu, F-75005 Paris, France
关键词
Blow-up; compactness; boundary; elliptic equation; Lipschitz condition; starshaped domain; PLUS INF INEQUALITY; BLOW;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the behavior of solutions to elliptic equations in 2 dimensions. In particular, we show that the set of solutions is compact under a Lipschitz condition.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Lemmas on compensated compactness in elliptic and parabolic equations
    Zhikov, V. V.
    Pastukhova, S. E.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2010, 270 (01) : 104 - 131
  • [22] Lemmas on compensated compactness in elliptic and parabolic equations
    V. V. Zhikov
    S. E. Pastukhova
    Proceedings of the Steklov Institute of Mathematics, 2010, 270 : 104 - 131
  • [23] BLOW-UP OF SOLUTIONS OF CRITICAL ELLIPTIC EQUATIONS IN THREE DIMENSIONS
    Frank, Rupert l.
    Koenig, Tobias
    Kovarik, Hynek
    ANALYSIS & PDE, 2024, 17 (05): : 1633 - 1692
  • [24] A criterion on compactness of the set of bounded solutions
    Tusen, H
    Qi, Z
    CHAOS SOLITONS & FRACTALS, 2004, 21 (04) : 983 - 988
  • [25] STRONG COMPACTNESS OF APPROXIMATE SOLUTIONS TO DEGENERATE ELLIPTIC-HYPERBOLIC EQUATIONS WITH DISCONTINUOUS FLUX FUNCTION
    Helge Holden
    Kenneth H. Karlsen
    Darko Mitrovic
    Evgueni Yu. Panov
    ActaMathematicaScientia, 2009, 29 (06) : 1573 - 1612
  • [26] STRONG COMPACTNESS OF APPROXIMATE SOLUTIONS TO DEGENERATE ELLIPTIC-HYPERBOLIC EQUATIONS WITH DISCONTINUOUS FLUX FUNCTION
    Holden, Helge
    Karlsen, Kenneth H.
    Mitrovic, Darko
    Panov, Evgueni Yu.
    ACTA MATHEMATICA SCIENTIA, 2009, 29 (06) : 1573 - 1612
  • [27] NONRADIAL SOLUTIONS OF A SEMILINEAR ELLIPTIC EQUATION IN 2 DIMENSIONS
    IAIA, J
    WARCHALL, H
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 119 (02) : 533 - 558
  • [28] Abstract concentration compactness and elliptic equations on unbounded domains
    Schindler, I
    Tintarev, K
    NONLINEAR ANALYSIS AND ITS APPLICATIONS TO DIFFERENTIAL EQUATIONS, 2001, 43 : 369 - 380
  • [29] COMPACTNESS METHODS FOR CERTAIN DEGENERATE ELLIPTIC-EQUATIONS
    WANG, L
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (02) : 341 - 350
  • [30] Compactness and existence results for degenerate critical elliptic equations
    Felli, V
    Schneider, M
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2005, 7 (01) : 37 - 73