Automorphism group of the derangement graph

被引:0
|
作者
Deng, Yun-Ping [1 ]
Zhang, Xiao-Dong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2011年 / 18卷 / 01期
基金
中国国家自然科学基金;
关键词
derangement graph; automorphism group; Cayley graph; symmetric group; CAYLEY-GRAPHS; INTERSECTING FAMILIES; THEOREM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that the full automorphism group of the derangement graph Gamma(n) (n >= 3) is equal to (R(S-n) x Inn(S-n)) x Z(2), where R(S-n) and Inn(S-n) are the right regular representation and the inner automorphism group of S-n respectively, and Z(2) = <phi > with the mapping phi : sigma(phi) = sigma(-1), (sic)sigma is an element of S-n. Moreover, all orbits on the edge set of Gamma(n) (n >= 3) are determined.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Automorphism Group of the Varietal Hypercube Graph
    Wang, Yi
    Feng, Yan-Quan
    Zhou, Jin-Xin
    GRAPHS AND COMBINATORICS, 2017, 33 (05) : 1131 - 1137
  • [22] The automorphism group of the bipartite Kneser graph
    S Morteza Mirafzal
    Proceedings - Mathematical Sciences, 2019, 129
  • [23] Automorphism Group of the Varietal Hypercube Graph
    Yi Wang
    Yan-Quan Feng
    Jin-Xin Zhou
    Graphs and Combinatorics, 2017, 33 : 1131 - 1137
  • [24] Automorphism group of the complete transposition graph
    Ashwin Ganesan
    Journal of Algebraic Combinatorics, 2015, 42 : 793 - 801
  • [25] Automorphism group of the complete transposition graph
    Ganesan, Ashwin
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2015, 42 (03) : 793 - 801
  • [26] The automorphism group of a graph product of groups
    Pettet, MR
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (10) : 4691 - 4708
  • [27] Upper bounds on the automorphism group of a graph
    Krasikov, I
    Lev, A
    Thatte, BD
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 489 - 493
  • [28] On the automorphism group of the fundamental group of a graph of polycyclic groups
    Raptis, E
    Varsos, D
    ALGEBRA COLLOQUIUM, 1997, 4 (03) : 241 - 248
  • [29] Automorphism group of 2-token graph of the Hamming graph
    Zhang, Ju
    Zhou, Jin-Xin
    Lee, Jaeun
    Li, Yan-Tao
    Xie, Jin-Hua
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [30] The automorphism group of the toroidal queen's graph
    Weakley, William D.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 42 : 141 - 158