Quantifying and modeling long-range cross correlations in multiple time series with applications to world stock indices
被引:100
|
作者:
Wang, Duan
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
Boston Univ, Dept Phys, Boston, MA 02215 USABoston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
Wang, Duan
[1
,2
]
论文数: 引用数:
h-index:
机构:
Podobnik, Boris
[1
,2
,3
,4
]
Horvatic, Davor
论文数: 0引用数: 0
h-index: 0
机构:
Univ Zagreb, Dept Phys, Fac Sci, Zagreb 10000, CroatiaBoston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
Horvatic, Davor
[5
]
Stanley, H. Eugene
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
Boston Univ, Dept Phys, Boston, MA 02215 USABoston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
Stanley, H. Eugene
[1
,2
]
机构:
[1] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Univ Rijeka, Fac Civil Engn, Rijeka 51000, Croatia
[4] Univ Ljubljana, Fac Econ, Ljubljana 1000, Slovenia
[5] Univ Zagreb, Dept Phys, Fac Sci, Zagreb 10000, Croatia
We propose a modified time lag random matrix theory in order to study time-lag cross correlations in multiple time series. We apply the method to 48 world indices, one for each of 48 different countries. We find long-range power-law cross correlations in the absolute values of returns that quantify risk, and find that they decay much more slowly than cross correlations between the returns. The magnitude of the cross correlations constitutes "bad news" for international investment managers who may believe that risk is reduced by diversifying across countries. We find that when a market shock is transmitted around the world, the risk decays very slowly. We explain these time-lag cross correlations by introducing a global factor model (GFM) in which all index returns fluctuate in response to a single global factor. For each pair of individual time series of returns, the cross correlations between returns (or magnitudes) can be modeled with the autocorrelations of the global factor returns (or magnitudes). We estimate the global factor using principal component analysis, which minimizes the variance of the residuals after removing the global trend. Using random matrix theory, a significant fraction of the world index cross correlations can be explained by the global factor, which supports the utility of the GFM. We demonstrate applications of the GFM in forecasting risks at the world level, and in finding uncorrelated individual indices. We find ten indices that are practically uncorrelated with the global factor and with the remainder of the world indices, which is relevant information for world managers in reducing their portfolio risk. Finally, we argue that this general method can be applied to a wide range of phenomena in which time series are measured, ranging from seismology and physiology to atmospheric geophysics.
机构:
Univ Porto, Fac Ciencias, Porto, Portugal
CMUP, Porto, PortugalUniv Porto, Fac Ciencias, Porto, Portugal
Pinto, Helder
论文数: 引用数:
h-index:
机构:
Pernice, Riccardo
论文数: 引用数:
h-index:
机构:
Amado, Celestino
Silva, Maria Eduarda
论文数: 0引用数: 0
h-index: 0
机构:
Univ Porto, Fac Econ, Porto, Portugal
CIDMA, Porto, PortugalUniv Porto, Fac Ciencias, Porto, Portugal
Silva, Maria Eduarda
Javorka, Michal
论文数: 0引用数: 0
h-index: 0
机构:
Comenius Univ, Dept Physiol, Jessenius Fac Med, Bratislava, Slovakia
Biomed Ctr Martin, Bratislava, SlovakiaUniv Porto, Fac Ciencias, Porto, Portugal
Javorka, Michal
Faes, Luca
论文数: 0引用数: 0
h-index: 0
机构:
Univ Palermo, Dept Engn, Palermo, ItalyUniv Porto, Fac Ciencias, Porto, Portugal
Faes, Luca
Rocha, Ana Paula
论文数: 0引用数: 0
h-index: 0
机构:
Univ Porto, Fac Ciencias, Porto, Portugal
CMUP, Porto, PortugalUniv Porto, Fac Ciencias, Porto, Portugal
Rocha, Ana Paula
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC),
2021,
: 748
-
751
机构:
Univ Shanghai Sci & Technol, Business Sch, Shanghai 200093, Peoples R ChinaUniv Shanghai Sci & Technol, Business Sch, Shanghai 200093, Peoples R China
Yuan, Qianshun
Gu, Changgui
论文数: 0引用数: 0
h-index: 0
机构:
Univ Shanghai Sci & Technol, Business Sch, Shanghai 200093, Peoples R ChinaUniv Shanghai Sci & Technol, Business Sch, Shanghai 200093, Peoples R China
Gu, Changgui
Weng, Tongfeng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Shanghai Sci & Technol, Business Sch, Shanghai 200093, Peoples R ChinaUniv Shanghai Sci & Technol, Business Sch, Shanghai 200093, Peoples R China
Weng, Tongfeng
Yang, Huijie
论文数: 0引用数: 0
h-index: 0
机构:
Univ Shanghai Sci & Technol, Business Sch, Shanghai 200093, Peoples R ChinaUniv Shanghai Sci & Technol, Business Sch, Shanghai 200093, Peoples R China
机构:
CUNY City Coll, Levich Inst, New York, NY 10031 USA
Coll Mt St Vincent, Div Nat Sci, Riverdale, NY 10471 USAPotsdam Inst Climate Impact Res, D-14412 Potsdam, Germany
机构:
Univ York, Dept Math, York, N Yorkshire, EnglandUniv York, Dept Math, York, N Yorkshire, England
Li, Degui
Robinson, Peter M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ York, Dept Math, York, N Yorkshire, England
London Sch Econ, Dept Econ, London WC2A 2AE, EnglandUniv York, Dept Math, York, N Yorkshire, England
Robinson, Peter M.
Shang, Han Lin
论文数: 0引用数: 0
h-index: 0
机构:
Australian Natl Univ, Res Sch Finance Actuarial Studies & Stat, Canberra, ACT, AustraliaUniv York, Dept Math, York, N Yorkshire, England