3D Bi2Te3 Interconnected Nanowire Networks to Increase Thermoelectric Efficiency

被引:8
|
作者
Ruiz-Clavijo, Alejandra [1 ]
Caballero-Calero, Olga [1 ]
Manzano, Cristina V. [1 ]
Maeder, Xavier [2 ]
Beardo, Albert [3 ]
Cartoixa, Xavier [4 ]
Xavier Aprimelvarez, F. [3 ]
Martin-Gonzalez, Marisol [1 ]
机构
[1] CSIC CEI UAM CSIC Isaac Newton, Inst Micro & Nanotecnol, IMN CNM, E-28760 Madrid, Spain
[2] Swiss Fed Labs Mat Sci & Technol, Lab Mech Mat & Nanostruct, EMPA, CH-3602 Thun, Switzerland
[3] Univ Autonoma Barcelona, Dept Fis, Bellaterra 08193, Spain
[4] Univ Autonoma Barcelona, Dept Enginyeria Elect, Bellaterra 08193, Spain
来源
ACS APPLIED ENERGY MATERIALS | 2021年 / 4卷 / 12期
关键词
thermoelectricity; nanostructure; nanowire; scaffold; bismuth telluride; zT; metamaterial; metastructure; FILMS;
D O I
10.1021/acsaem.1c02129
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
3D interconnected nanowire scaffoldings are shown to increase the thermoelectric efficiency in comparison to similar diameter 1D nanowires and films grown under similar electrodeposition conditions. Bi2Te3 3D nanonetworks offer a reduction in thermal conductivity (kappa(T)) while preserving the high electrical conductivity of the films. The reduction in kappa(T) is modeled using the hydrodynamic heat transport equation, and it can be understood as a heat viscosity effect due to the 3D nanostructuration. In addition, the Seebeck coefficient is twice that of nanowires and films, and up to 50% higher than in a single crystal. This increase is interpreted as a nonequilibrium effect that the geometry of the structure induces on the distribution function of the phonons, producing an enhanced phonon drag. These thermoelectric metamaterials have higher performance and are fabricated with large areas by a cost-effective method, which makes them suitable for up-scale production.
引用
收藏
页码:13556 / 13566
页数:11
相关论文
共 50 条
  • [41] Thermoelectric properties of Bi2Te3 disk fabricated from rice kernel-like Bi2Te3 powder
    Suriwong, Tawat
    Plirdpring, Theerayuth
    Threrujirapapong, Thotsaphon
    Thongtem, Titipun
    Thongtem, Somchai
    MICRO & NANO LETTERS, 2015, 10 (01) : 19 - 22
  • [42] Flexible temperature-pressure dual sensor based on 3D spiral thermoelectric Bi2Te3 films
    Yu, Hailong
    Hu, Zhenqing
    He, Juan
    Ran, Yijun
    Zhao, Yang
    Yu, Zhi
    Tai, Kaiping
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [43] PREPARATION AND THERMOELECTRIC PROPERTIES OF BI2TE3 AND ALLOYS WITH BI2SE3
    HARMAN, TC
    LOGAN, MJ
    PARIS, B
    LOUGHER, EH
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1958, 105 (08) : C161 - C161
  • [44] Flexible temperature-pressure dual sensor based on 3D spiral thermoelectric Bi2Te3 films
    Hailong Yu
    Zhenqing Hu
    Juan He
    Yijun Ran
    Yang Zhao
    Zhi Yu
    Kaiping Tai
    Nature Communications, 15
  • [45] INFLUENCE OF LEG SIZE AND MECHANICAL SURFACE TREATMENT ON THERMOELECTRIC PROPERTIES OF THERMOCOUPLES OF SB2TE3/BI2TE3 AND BI2TE3/BI2SE3
    SCHREINE.H
    WENDLER, F
    ZEITSCHRIFT FUR METALLKUNDE, 1966, 57 (09): : 708 - &
  • [46] Magnetic Control of Flexible Thermoelectric Devices Based on Macroscopic 3D Interconnected Nanowire Networks
    Araujo, Flavio Abreu
    Gomes, Tristan da Camara Santa Clara
    Piraux, Luc
    ADVANCED ELECTRONIC MATERIALS, 2019, 5 (08)
  • [47] Diffusion bonding at the interface of Bi2Te3 thermoelectric modules
    Yen Ngoc Nguyen
    Son, Injoon
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 292
  • [48] Thermoelectric properties of molten Bi2Te3, CuI, and AgI
    Nishikawa, Kazutaka
    Takeda, Yasuhiko
    Motohiro, Tomoyoshi
    APPLIED PHYSICS LETTERS, 2013, 102 (03)
  • [49] Electrodeposition of MWNT/Bi2Te3 Composite Thermoelectric Films
    Han Xu
    Wei Wang
    Journal of Electronic Materials, 2013, 42 : 1936 - 1945
  • [50] Thermoelectric Response in Single Quintuple Layer Bi2Te3
    Sharma, S.
    Schwingenschlogl, U.
    ACS ENERGY LETTERS, 2016, 1 (04): : 875 - 879