Classical Orthogonal Polynomials and Some New Properties for Their Centroids of Zeroes

被引:1
|
作者
Aloui, B. [1 ]
Chammam, W. [1 ,2 ]
机构
[1] Gabes Univ, Higher Inst Ind Syst Gabes, Dept Electromech, St Salah Eddine Elayoubi, Gabes 6033, Tunisia
[2] Majmaah Univ, Coll Sci Al Zulfi, Dept Math, POB 66, Al Majmaah 11952, Saudi Arabia
关键词
classical orthogonal polynomial; centroid of zeroes; INTERPOLATION; SEQUENCES; ROOTS;
D O I
10.1007/s10476-020-0012-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aims to highlight new properties of the centroid of the zeroes of a polynomial. As an illustration, we apply these techniques to O-classical orthogonal polynomials, where O is the derivative operator D or the q-derivative H-q.
引用
收藏
页码:13 / 23
页数:11
相关论文
共 50 条
  • [41] Classical orthogonal polynomials as moments
    Ismail, MEH
    Stanton, D
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (03): : 520 - 542
  • [42] Classical Orthogonal Polynomials Revisited
    K. Castillo
    J. Petronilho
    Results in Mathematics, 2023, 78
  • [43] The associated classical orthogonal polynomials
    Rahman, M
    SPECIAL FUNCTIONS 2000: CURRENT PERSPECTIVE AND FUTURE DIRECTIONS, 2001, 30 : 255 - 279
  • [44] On moments of classical orthogonal polynomials
    Sadjang, P. Njionou
    Koepf, W.
    Foupouagnigni, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) : 122 - 151
  • [45] On bivariate classical orthogonal polynomials
    Marcellan, Francisco
    Marriaga, Misael
    Perez, Teresa E.
    Pinar, Miguel A.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 325 : 340 - 357
  • [46] Invariance properties of Wronskian type determinants of classical and classical discrete orthogonal polynomials
    Curbera, Guillermo P.
    Duran, Antonio J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 474 (01) : 748 - 764
  • [47] Quasi-orthogonality with applications to some families of classical orthogonal polynomials
    Brezinski, C
    Driver, KA
    Redivo-Zaglia, M
    APPLIED NUMERICAL MATHEMATICS, 2004, 48 (02) : 157 - 168
  • [48] CASORATI TYPE DETERMINANTS OF SOME q-CLASSICAL ORTHOGONAL POLYNOMIALS
    Duran, Antonio J.
    Arvesu, Jorge
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (04) : 1655 - 1668
  • [49] Results for some inversion problems for classical continuous and discrete orthogonal polynomials
    Zarzo, A
    Area, I
    Godoy, E
    Ronveaux, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (03): : L35 - L40
  • [50] New results on the Bochner condition about classical orthogonal polynomials
    Loureiro, Ana F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 364 (02) : 307 - 323