On monotone contraction mappings in modular function spaces

被引:5
|
作者
Alfuraidan, Monther R. [1 ]
Bachar, Mostafa [2 ]
Khamsi, Mohamed A. [3 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[2] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
[3] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
关键词
fixed point; modular function space; monotone mappings; pointwise contraction; PARTIALLY ORDERED SETS; THEOREMS;
D O I
10.1186/s13663-015-0274-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of fixed points of monotone-contraction mappings in modular function spaces. This is the modular version of the Ran and Reurings fixed point theorem. We also discus the extension of these results to the case of pointwise monotone-contraction mappings in modular function spaces.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A FIXED POINT THEOREM FOR QUASI-CONTRACTION MAPPINGS IN PARTIALLY ORDER MODULAR SPACES WITH AN APPLICATION
    Gordji, M. Eshaghi
    Sajadian, F.
    Cho, Y. J.
    Ramezani, M.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (02): : 135 - 146
  • [42] Fixed point theorems for contraction mappings in modular metric spaces (vol 2011, 93, 2011)
    Mongkolkeha, Chirasak
    Sintunavarat, Wutiphol
    Kumam, Poom
    FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [43] A fixed point theorem for quasi-contraction mappings in partially order modular spaces with an applica
    Gordji, M. Eshaghi
    Sajadian, F.
    Cho, Y.J.
    Ramezani, M.
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2014, 76 (02): : 135 - 146
  • [44] A New Iteration Method for Nonexpansive Mappings and Monotone Mappings in Hilbert Spaces
    Jung, Jong Soo
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [45] A New Iteration Method for Nonexpansive Mappings and Monotone Mappings in Hilbert Spaces
    JongSoo Jung
    Journal of Inequalities and Applications, 2010
  • [46] NONSPREADING MAPPINGS ON MODULAR VECTOR SPACES
    Ciobanescu, Cristian
    Postolache, Mihai
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2021, 83 (04): : 3 - 12
  • [47] Nonspreading mappings on modular vector spaces
    Ciobanescu, Cristian
    Postolache, Mihai
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2021, 83 (04): : 3 - 12
  • [48] On the set of common fixed points of semigroups of nonlinear mappings in modular function spaces
    Saud M Alsulami
    Walter M Kozlowski
    Fixed Point Theory and Applications, 2014
  • [49] SOME FIXED POINT RESULTS FOR ρ-FUNDAMENTALLY NONEXPANSIVE MAPPINGS IN MODULAR FUNCTION SPACES
    Panwar, Anju
    Reena
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2020, 19 (09): : 957 - 968
  • [50] On the set of common fixed points of semigroups of nonlinear mappings in modular function spaces
    Alsulami, Saud M.
    Kozlowski, Walter M.
    FIXED POINT THEORY AND APPLICATIONS, 2014,