Gene selection for tumor classification using microarray gone expression data

被引:0
|
作者
Yendrapalli, K. [1 ]
Basnet, R. [1 ]
Mukkamala, S. [1 ]
Sung, A. H. [1 ]
机构
[1] New Mexico Inst Min & Technol, Dept Comp Sci, Socorro, NM 87801 USA
关键词
gene selection; tumor classification; kernel machines; support vector machines;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we perform a t-test for significant gene expression analysis in different dimensions based on molecular profiles from microarray data, and compare several computational intelligent techniques for classification accuracy on Leukemia, Lymphoma and Prostate cancer datasets of broad institute and Colon cancer dataset from Princeton gene expression project. This paper also describes results concerning the robustness and generalization capabilities of kernel methods in classifying. We use traditional support vector machines (SVM), biased support vector machine (BSVM) and leave-one-out model selection for support vector machines (looms) for model selection. We also evaluate the impact of kernel type and parameter values on the accuracy of a support vector machine (SVM) performing tumor classification. Through a variety of comparative experiments, it is found that SVM performs the best for detecting Leukemia and Lymphoma, BSVM performs the best for Colon and Prostate cancers. We show that classification accuracy varies with the kernel type and the parameter values; thus, with appropriately chosen parameter values, tumors can be classified by kernel machines with higher accuracy and lower false alarms. Our results demonstrate the potential of using learning machines in diagnosis of the malignancy of a tumor. http://www.iaeng.org/publication/WCE2007/WCE2007_pp290-295.pdf
引用
收藏
页码:290 / +
页数:3
相关论文
共 50 条
  • [31] Classification of breast cancer using microarray gene expression data: A survey
    Abd-Elnaby, Muhammed
    Alfonse, Marco
    Roushdy, Mohamed
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2021, 117
  • [32] Cancer Classification by Sparse Representation using Microarray Gene Expression Data
    Hang, Xiyi
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS, PROCEEDINGS, 2008, : 174 - 177
  • [33] Feature Selection for Cancer Classification on Microarray Expression Data
    Hsu, Hui-Huang
    Lu, Ming-Da
    [J]. ISDA 2008: EIGHTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 3, PROCEEDINGS, 2008, : 153 - 158
  • [34] Gene subset selection in microarray data using entropic filtering for cancer classification
    Navarro, Felix F. Gonzalez
    Munoz, Lluis A. Belanche
    [J]. EXPERT SYSTEMS, 2009, 26 (01) : 113 - 124
  • [35] Gene Selection for Microarray Data Classification Using Hybrid Meta-Heuristics
    Dif, Nassima
    Attaoui, Mohamed Walid
    Elberrichi, Zakaria
    [J]. MODELLING AND IMPLEMENTATION OF COMPLEX SYSTEMS, 2019, 64 : 119 - 132
  • [36] Gene selection for microarray data classification using a novel ant colony optimization
    Tabakhi, Sina
    Najafi, Ali
    Ranjbar, Reza
    Moradi, Parham
    [J]. NEUROCOMPUTING, 2015, 168 : 1024 - 1036
  • [37] A Comparative Study of Gene Selection Methods for Cancer Classification Using Microarray Data
    Babu, Manish
    Sarkar, Kamal
    [J]. 2016 SECOND IEEE INTERNATIONAL CONFERENCE ON RESEARCH IN COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (ICRCICN), 2016, : 204 - 211
  • [38] Improved swarm-optimization-based filter-wrapper gene selection from microarray data for gene expression tumor classification
    Ke, Lin
    Li, Min
    Wang, Lei
    Deng, Shaobo
    Ye, Jun
    Yu, Xiang
    [J]. PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (02) : 455 - 472
  • [39] Improved swarm-optimization-based filter-wrapper gene selection from microarray data for gene expression tumor classification
    Lin Ke
    Min Li
    Lei Wang
    Shaobo Deng
    Jun Ye
    Xiang Yu
    [J]. Pattern Analysis and Applications, 2023, 26 : 455 - 472
  • [40] A Survey on Hybrid Feature Selection Methods in Microarray Gene Expression Data for Cancer Classification
    Almugren, Nada
    Alshamlan, Hala
    [J]. IEEE ACCESS, 2019, 7 : 78533 - 78548