Performance study of a solid oxide fuel cell and gas turbine hybrid system designed for methane operating with non-designed fuels

被引:39
|
作者
Li, Yang [1 ]
Weng, Yiwu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Minist Educ, Key Lab Power Machinery & Engn, Sch Mech Engn, Shanghai 200240, Peoples R China
关键词
Solid oxide fuel cell; Gas turbine; Hybrid system; Ethanol; Hydrogen; Methane; EXERGY ANALYSIS; STEADY-STATE; SOFC; POWER; ETHANOL; MODEL;
D O I
10.1016/j.jpowsour.2011.01.011
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents an analysis of the fuel flexibility of a methane-based solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system. The simulation models of the system are mathematically defined. Special attention is paid to the development of an SOFC thermodynamic model that allows for the calculation of radial temperature gradients. Based on the simulation model, the new design point of system for new fuels is defined first; the steady-state performance of the system fed by different fuels is then discussed. When the hybrid system operates with hydrogen, the net power output at the new design point will decrease to 70% of the methane, while the design net efficiency will decrease to 55%. Similar to hydrogen, the net output power of the ethanol-fueled system will decrease to 88% of the methane value due to the lower cooling effect of steam reforming. However, the net efficiency can remain at 61% at high level due to increased heat recuperation from exhaust gas. To increase the power output of the hybrid system operating with non-design fuels without changing the system configuration, three different measures are introduced and investigated in this paper. The introduced measures can increase the system net power output operating with hydrogen to 94% of the original value at the cost of a lower efficiency of 45%. (c) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3824 / 3835
页数:12
相关论文
共 50 条
  • [41] Comparative study of fuel types on solid oxide fuel cell-gas turbine hybrid system for electric propulsion aircraft
    Liu, He
    Qin, Jiang
    Xiu, Xinyan
    Ha, Chan
    Dong, Peng
    FUEL, 2023, 347
  • [42] Thermo-economic optimization of a solid oxide fuel cell, gas turbine hybrid system
    Autissier, N.
    Palazzi, F.
    Marechal, F.
    van Herle, J.
    Favrat, D.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2007, 4 (02): : 123 - 129
  • [43] PARAMETRIC ANALYSIS ON A NOVEL HYBRID SYSTEM OF SOLID OXIDE FUEL CELL AND MICRO GAS TURBINE
    Zhang, Wenshu
    Zhang, Sheng
    Weng, Shilie
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2010, VOL 5, PTS A AND B, 2012, : 955 - 961
  • [44] Exergy based performance analysis of a solid oxide fuel cell and steam injected gas turbine hybrid power system
    Motahar, Sadegh
    Alemrajabi, Ali Akbar
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (05) : 2396 - 2407
  • [45] Performance comparison of internal reforming against external reforming in a solid oxide fuel cell, gas turbine hybrid system
    Liese, EA
    Gemmen, RS
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2005, 127 (01): : 86 - 90
  • [46] Comprehensive technical analyses of a solid oxide fuel cell turbine-less hybrid aircraft propulsion system using ammonia and methane as alternative fuels
    Guo, Fafu
    Li, Chengjie
    Xiu, Xinyan
    Cheng, Kunlin
    Qin, Jiang
    APPLIED THERMAL ENGINEERING, 2023, 230
  • [47] RGA ANALYSIS OF A SOLID OXIDE FUEL CELL GAS TURBINE HYBRID PLANT
    Tsai, Alex
    Banta, Larry
    Tucker, David
    Gemmen, Randall
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY - 2008, 2008, : 675 - 680
  • [48] TRANSIENT PERFORMANCE AND CONTROL SYSTEM DESIGN OF SOLID OXIDE FUEL CELL/GAS TURBINE HYBRIDS
    Kroll, Florian
    Nielsen, Annette
    Staudacher, Stephan
    PROCEEDINGS OF THE ASME TURBO EXPO 2008, VOL 2, 2008, : 441 - 449
  • [49] Hybrid Solid Oxide Fuel Cell and Micro Gas Turbine for Regional Jets
    Santarelli, M.
    Cabrera, M.
    JOURNAL OF AIRCRAFT, 2011, 48 (04): : 1216 - 1224
  • [50] Technical analysis of a hybrid solid oxide fuel cell/gas turbine cycle
    Leal, Elisangela Martins
    Bortolaia, Luis Antonio
    Leal Junior, Amauri Menezes
    ENERGY CONVERSION AND MANAGEMENT, 2019, 202