Improving evolvability of genetic parallel programming using dynamic sample weighting

被引:0
|
作者
Cheang, SM [1 ]
Lee, KH [1 ]
Leung, KS [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Sha Tin 100083, Peoples R China
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper investigates the sample weighting effect on Genetic Parallel, Programming (GPP) that evolves parallel programs to solve the training samples captured directly from a real-world system. The distribution of these samples can be extremely biased. Standard GPP assigns equal weights to ail samples. It slows down evolution because crowded regions of samples dominate the fitness evaluation and cause premature convergence. This paper compares the performance of four sample weighting (SW) methods, namely, Equal SW (ESW), Class-equal SW (CSW), Static SW (SSW) an Dynamic SW (DSW) on five training sets. Experimental results show that DSW is superior in performance on tested problems.
引用
下载
收藏
页码:1802 / 1803
页数:2
相关论文
共 50 条
  • [41] Improving Quality of Prediction in Highly Dynamic Environments Using Approximate Dynamic Programming
    Ganesan, Rajesh
    Balakrishna, Poornima
    Sherry, Lance
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2010, 26 (07) : 717 - 732
  • [42] Document clustering using sample weighting
    Zhang, Chengzhi
    Su, Xinning
    Zhou, Dongmin
    RECENT ADVANCE OF CHINESE COMPUTING TECHNOLOGIES, 2007, : 260 - 265
  • [43] Modelling biological evolvability: implicit context and variation filtering in enzyme genetic programming
    Lones, MA
    Tyrrell, AM
    BIOSYSTEMS, 2004, 76 (1-3) : 229 - 238
  • [44] Dynamic sample weighting for weakly supervised object detection
    Li, Xuewei
    Yi, Song
    Zhang, Ruixuan
    Fu, Xuzhou
    Jiang, Han
    Wang, Chenhan
    Liu, Zhiqiang
    Gao, Jie
    Yu, Jian
    Yu, Mei
    Yu, Ruiguo
    IMAGE AND VISION COMPUTING, 2022, 122
  • [45] Improving parallel ordering of sparse matrices using genetic algorithms
    Lin, WY
    APPLIED INTELLIGENCE, 2005, 23 (03) : 257 - 265
  • [46] Improving Parallel Ordering of Sparse Matrices Using Genetic Algorithms
    Wen-Yang Lin
    Applied Intelligence, 2005, 23 : 257 - 265
  • [47] Improving parallel ordering of sparse matrices using genetic algorithms
    Lin, WY
    GECCO-99: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 1999, : 1790 - 1790
  • [48] Parallel Optimization of Transistor Level Circuits using Cartesian Genetic Programming
    Mrazek, Vojtech
    Vasicek, Zdenek
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 1849 - 1856
  • [49] Parallel evolution using multi-chromosome cartesian genetic programming
    Walker, James Alfred
    Voelk, Katharina
    Smith, Stephen L.
    Miller, Julian Francis
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2009, 10 (04) : 417 - 445
  • [50] Parallel evolution using multi-chromosome cartesian genetic programming
    James Alfred Walker
    Katharina Völk
    Stephen L. Smith
    Julian Francis Miller
    Genetic Programming and Evolvable Machines, 2009, 10 : 417 - 445