Evaluating the quantum Ziv-Zakai bound for phase estimation in noisy environments

被引:4
|
作者
Chang, Shoukang [1 ]
Ye, Wei [2 ]
Rao, Xuan [2 ]
Zhang, Huan [3 ]
Huang, Liqing [1 ]
Luo, Mengmeng [1 ]
Chen, Yuetao [1 ]
Gao, Shaoyan [1 ]
Hu, Liyun [4 ]
机构
[1] Xi An Jiao Tong Univ, Sch Phys, MOE Key Lab Nonequilibrium Synth & Modulat Conden, Shaanxi Prov Key Lab Quantum Informat & Quantum O, Xian 710049, Peoples R China
[2] Nanchang Hangkong Univ, Sch Informat Engn, Nanchang 330063, Jiangxi, Peoples R China
[3] Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Guangdong, Peoples R China
[4] Jiangxi Normal Univ, Ctr Quantum Sci & Technol, Nanchang 330022, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
ERROR; LIMIT;
D O I
10.1364/OE.459659
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the highly non-Gaussian regime, the quantum Ziv-Zakai bound (QZZB) provides a lower bound on the available precision, demonstrating the better performance compared with the quantum Cramer-Rao bound. However, evaluating the impact of a noisy environment on the QZZB without applying certain approximations proposed by Tsang [Phys. Rev. Lett. 108, 230401 (2012)] remains a difficult challenge. In this paper, we not only derive the asymptotically tight QZZB for phase estimation with the photon loss and the phase diffusion by invoking the variational method and the technique of integration within an ordered product of operators, but also show its estimation performance for several different Gaussian resources, such as a coherent state (CS), a single-mode squeezed vacuum state (SMSVS) and a two-mode squeezed vacuum state (TMSVS). In this asymptotically tight situation, our results indicate that compared with the SMSVS and the TMSVS, the QZZB for the CS always shows the better estimation performance under the photon-loss environment. More interestingly, for the phase-diffusion environment, the estimation performance of the QZZB for the TMSVS can be better than that for the CS throughout a wide range of phase-diffusion strength. Our findings will provide an useful guidance for investigating the noisy quantum parameter estimation. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:24207 / 24221
页数:15
相关论文
共 50 条
  • [41] Quantum Bell-Ziv-Zakai Bounds and Heisenberg Limits for Waveform Estimation
    Berry, Dominic W.
    Tsang, Mankei
    Hall, Michael J. W.
    Wiseman, Howard M.
    PHYSICAL REVIEW X, 2015, 5 (03):
  • [42] Ziv-Zakai Time-Delay Estimation Bounds for Frequency-Hopping Waveforms Under Frequency-Selective Fading
    Liu, Ning
    Xu, Zhengyuan
    Sadler, Brian M.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (12) : 6400 - 6406
  • [43] Generalized phase estimation in noisy quantum gates
    Ragazzi, Giovanni
    Cavazzoni, Simone
    Bordone, Paolo
    Paris, Matteo G. A.
    PHYSICAL REVIEW A, 2024, 110 (05)
  • [44] DOA ESTIMATION IN STRUCTURED PHASE-NOISY ENVIRONMENTS
    Dremeau, Angelique
    Herzet, Cedric
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 3176 - 3180
  • [45] Lower bound for quantum phase estimation
    Bessen, AJ
    PHYSICAL REVIEW A, 2005, 71 (04)
  • [46] The Cramer-Rao bound for the estimation of noisy phase signals
    Zoubir, AM
    Taleb, A
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 3101 - 3104
  • [47] Enhanced Multiqubit Phase Estimation in Noisy Environments by Local Encoding
    Proietti, Massimiliano
    Ringbauer, Martin
    Graffitti, Francesco
    Barrow, Peter
    Pickston, Alexander
    Kundys, Dmytro
    Cavalcanti, Daniel
    Aolita, Leandro
    Chaves, Rafael
    Fedrizzi, Alessandro
    PHYSICAL REVIEW LETTERS, 2019, 123 (18)
  • [48] Phase Estimation via Quantum Interferometry for Noisy Detectors
    Spagnolo, Nicolo
    Vitelli, Chiara
    Lucivero, Vito Giovanni
    Giovannetti, Vittorio
    Maccone, Lorenzo
    Sciarrino, Fabio
    PHYSICAL REVIEW LETTERS, 2012, 108 (23)
  • [49] OPTIMIZED QUBIT PHASE ESTIMATION IN NOISY QUANTUM CHANNELS
    Tesio, Enrico
    Olivares, Stefano
    Paris, Matteo G. A.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2011, 9 : 379 - 387
  • [50] A Precise Error Bound for Quantum Phase Estimation
    Chappell, James M.
    Lohe, Max A.
    von Smekal, Lorenz
    Iqbal, Azhar
    Abbott, Derek
    PLOS ONE, 2011, 6 (05):