Evaluating the quantum Ziv-Zakai bound for phase estimation in noisy environments

被引:4
|
作者
Chang, Shoukang [1 ]
Ye, Wei [2 ]
Rao, Xuan [2 ]
Zhang, Huan [3 ]
Huang, Liqing [1 ]
Luo, Mengmeng [1 ]
Chen, Yuetao [1 ]
Gao, Shaoyan [1 ]
Hu, Liyun [4 ]
机构
[1] Xi An Jiao Tong Univ, Sch Phys, MOE Key Lab Nonequilibrium Synth & Modulat Conden, Shaanxi Prov Key Lab Quantum Informat & Quantum O, Xian 710049, Peoples R China
[2] Nanchang Hangkong Univ, Sch Informat Engn, Nanchang 330063, Jiangxi, Peoples R China
[3] Sun Yat Sen Univ, Sch Phys, Guangzhou 510275, Guangdong, Peoples R China
[4] Jiangxi Normal Univ, Ctr Quantum Sci & Technol, Nanchang 330022, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
ERROR; LIMIT;
D O I
10.1364/OE.459659
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the highly non-Gaussian regime, the quantum Ziv-Zakai bound (QZZB) provides a lower bound on the available precision, demonstrating the better performance compared with the quantum Cramer-Rao bound. However, evaluating the impact of a noisy environment on the QZZB without applying certain approximations proposed by Tsang [Phys. Rev. Lett. 108, 230401 (2012)] remains a difficult challenge. In this paper, we not only derive the asymptotically tight QZZB for phase estimation with the photon loss and the phase diffusion by invoking the variational method and the technique of integration within an ordered product of operators, but also show its estimation performance for several different Gaussian resources, such as a coherent state (CS), a single-mode squeezed vacuum state (SMSVS) and a two-mode squeezed vacuum state (TMSVS). In this asymptotically tight situation, our results indicate that compared with the SMSVS and the TMSVS, the QZZB for the CS always shows the better estimation performance under the photon-loss environment. More interestingly, for the phase-diffusion environment, the estimation performance of the QZZB for the TMSVS can be better than that for the CS throughout a wide range of phase-diffusion strength. Our findings will provide an useful guidance for investigating the noisy quantum parameter estimation. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:24207 / 24221
页数:15
相关论文
共 50 条
  • [1] Ziv-Zakai Bound for DOAs Estimation
    Zhang, Zongyu
    Shi, Zhiguo
    Gu, Yujie
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 136 - 149
  • [2] Ziv-Zakai Bound for Direct Position Estimation
    Gusi-Amigo, Adria
    Closas, Pau
    Mallat, Achraf
    Vandendorpe, Luc
    NAVIGATION-JOURNAL OF THE INSTITUTE OF NAVIGATION, 2018, 65 (03): : 463 - 475
  • [3] A ZIV-ZAKAi TYPE BOUND FOR HYBRID PARAMETER ESTIMATION
    Ren, Chengfang
    Galy, Jerome
    Chaumette, Eric
    Larzabal, Pascal
    Renaux, Alexandre
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [4] Explicit Ziv-Zakai lower bound for bearing estimation
    Bell, KL
    Ephraim, Y
    VanTrees, HL
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (11) : 2810 - 2824
  • [5] Ziv-Zakai Bound for Compressive Time Delay Estimation
    Zhang, Zongyu
    Shi, Zhiguo
    Zhou, Chengwei
    Yan, Chenggang
    Gu, Yujie
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 4006 - 4019
  • [6] Explicit Ziv-Zakai lower bound for bearing estimation
    Bell, KL
    Ephraim, Y
    VanTrees, HL
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 2852 - 2855
  • [7] Ziv-Zakai Error Bounds for Quantum Parameter Estimation
    Tsang, Mankei
    PHYSICAL REVIEW LETTERS, 2012, 108 (23)
  • [8] Ziv-Zakai Bound for 2D-DOAs Estimation
    Zhang, Zongyu
    Shi, Zhiguo
    Shao, Cunqi
    Chen, Jiming
    Greco, Maria Sabrina
    Gini, Fulvio
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2024, 72 : 2483 - 2497
  • [9] Extended Ziv-Zakai lower bound for vector parameter estimation
    Bell, KL
    Steinberg, Y
    Ephraim, Y
    VanTrees, HL
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (02) : 624 - 637
  • [10] Deterministic Ziv-Zakai Bound for Compressive Time Delay Estimation
    Zhang, Zongyu
    Zhou, Chengwei
    Yan, Chenggang
    Shi, Zhiguo
    2022 IEEE RADAR CONFERENCE (RADARCONF'22), 2022,