MCMC curve sampling for image segmentation

被引:0
|
作者
Fan, Ayres C. [1 ]
Fisher, John W., III [1 ,2 ]
Wells, William M., III [2 ,3 ]
Levitt, James J. [3 ,4 ]
Willsky, Alan S. [1 ]
机构
[1] MIT, Informat & Decis Syst Lab, Cambridge, MA 02139 USA
[2] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA USA
[3] Brigham & Womens Hosp, Harvard Med Sch, Boston, MA USA
[4] VA Boston HCS, Harvard Med Sch, Dept Psychiat, Brockton, MA USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present an algorithm to generate samples from probability distributions on the space of curves. We view a traditional curve evolution energy functional as a negative log probability distribution and sample from it using a Markov chain Monte Carlo (MCMC) algorithm. We define a proposal distribution by generating smooth perturbations to the normal of the curve and show how to compute the transition probabilities to ensure that the samples come from the posterior distribution. We demonstrate some advantages of sampling methods such as robustness to local minima, better characterization of multi-modal distributions, access to some measures of estimation error, and ability to easily incorporate constraints on the curve.
引用
收藏
页码:477 / +
页数:2
相关论文
共 50 条
  • [31] MCMC_CLIB-an advanced MCMC sampling package for ODE models
    Kramer, Andrei
    Stathopoulos, Vassilios
    Girolami, Mark
    Radde, Nicole
    BIOINFORMATICS, 2014, 30 (20) : 2991 - 2992
  • [32] MCMC methods for sampling function space
    Beskos, Alexandros
    Stuart, Andrew
    ICIAM 07: 6TH INTERNATIONAL CONGRESS ON INDUSTRIAL AND APPLIED MATHEMATICS, 2009, : 337 - +
  • [33] On MCMC sampling in hierarchical longitudinal models
    Chib, S
    Carlin, BP
    STATISTICS AND COMPUTING, 1999, 9 (01) : 17 - 26
  • [35] Classification of digital modulations by MCMC sampling
    Lesage, W
    Tourneret, JY
    Djuric, PM
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 2553 - 2556
  • [36] On MCMC sampling in hierarchical longitudinal models
    Siddhartha Chib
    Bradley P. Carlin
    Statistics and Computing, 1999, 9 : 17 - 26
  • [37] Reunderstanding Slice Sampling as Parallel MCMC
    Tran, Khoa T.
    Ninness, Brett
    2015 IEEE CONFERENCE ON CONTROL AND APPLICATIONS (CCA 2015), 2015, : 1197 - 1202
  • [38] Model-based curve evolution technique for image segmentation
    Tsai, A
    Yezzi, A
    Wells, W
    Tempany, C
    Tucker, D
    Fan, A
    Grimson, WE
    Willsky, A
    2001 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2001, : 463 - 468
  • [39] Real time image sequence segmentation using curve evolution
    Zhang, J
    Liu, W
    REAL-TIME IMAGING V, 2001, 4303 : 67 - 78
  • [40] A curve evolution approach for image segmentation using adaptive flows
    Feng, HH
    Castañon, DA
    Karl, WC
    EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL II, PROCEEDINGS, 2001, : 494 - 499