MCMC curve sampling for image segmentation

被引:0
|
作者
Fan, Ayres C. [1 ]
Fisher, John W., III [1 ,2 ]
Wells, William M., III [2 ,3 ]
Levitt, James J. [3 ,4 ]
Willsky, Alan S. [1 ]
机构
[1] MIT, Informat & Decis Syst Lab, Cambridge, MA 02139 USA
[2] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA USA
[3] Brigham & Womens Hosp, Harvard Med Sch, Boston, MA USA
[4] VA Boston HCS, Harvard Med Sch, Dept Psychiat, Brockton, MA USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present an algorithm to generate samples from probability distributions on the space of curves. We view a traditional curve evolution energy functional as a negative log probability distribution and sample from it using a Markov chain Monte Carlo (MCMC) algorithm. We define a proposal distribution by generating smooth perturbations to the normal of the curve and show how to compute the transition probabilities to ensure that the samples come from the posterior distribution. We demonstrate some advantages of sampling methods such as robustness to local minima, better characterization of multi-modal distributions, access to some measures of estimation error, and ability to easily incorporate constraints on the curve.
引用
收藏
页码:477 / +
页数:2
相关论文
共 50 条
  • [1] MCMC Shape Sampling for Image Segmentation with Nonparametric Shape Priors
    Erdil, Ertunc
    Yildirim, Sinan
    Cetin, Mujdat
    Tasdizen, Tolga
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 411 - 419
  • [2] MCMC curve sampling and geometric conditional simulation
    Fan, Ayres
    Fisher, John W., III
    Kane, Jonathan
    Willsky, Alan S.
    COMPUTATIONAL IMAGING VI, 2008, 6814
  • [3] Pseudo-Marginal MCMC Sampling for Image Segmentation Using Nonparametric Shape Priors
    Erdil, Ertunc
    Yildirim, Sinan
    Tasdizen, Tolga
    Cetin, Mujdat
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (11) : 5702 - 5715
  • [4] MCMC SAMPLING FOR JOINT SEGMENTATION OF WIND SPEED AND DIRECTION
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    2009 IEEE 13TH DIGITAL SIGNAL PROCESSING WORKSHOP & 5TH IEEE PROCESSING EDUCATION WORKSHOP, VOLS 1 AND 2, PROCEEDINGS, 2009, : 250 - 255
  • [5] Efficient proposal distributions for MCMC image segmentation
    Kostiainen, T
    Lampinen, J
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 933 - 936
  • [6] Bayesian curve fitting using MCMC with applications to signal segmentation
    Punskaya, E
    Andrieu, C
    Doucet, A
    Fitzgerald, WJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (03) : 747 - 758
  • [7] Segmentation of color images via reversible jump MCMC sampling
    Kato, Zoltan
    IMAGE AND VISION COMPUTING, 2008, 26 (03) : 361 - 371
  • [8] Variational level set segmentation for forest based on MCMC sampling
    Yang Tie-jun
    Huang Lin
    Jiang Chuan-xian
    Nong Jian
    LAND SURFACE REMOTE SENSING II, 2014, 9260
  • [9] Perfect MCMC Sampling in Bayesian MRFs for Uncertainty Estimation in Segmentation
    Garg, Saurabh
    Awate, Suyash P.
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 : 673 - 681
  • [10] Spatial Sampling for Image Segmentation
    Rivera, Mariano
    Dalmau, Oscar
    Mio, Washington
    Ramirez-Manzanares, Alonso
    COMPUTER JOURNAL, 2012, 55 (03): : 313 - 324