Atlas-Based Under-Segmentation

被引:0
|
作者
Wachinger, Christian [1 ]
Golland, Polina [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
来源
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2014, PT I | 2014年 / 8673卷
关键词
IMAGE SEGMENTATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study the widespread, but rarely discussed, tendency of atlas-based segmentation to under-segment the organs of interest. Commonly used error measures do not distinguish between under- and over-segmentation, contributing to the problem. We explicitly quantify over- and under-segmentation in several typical examples and present a new hypothesis for the cause. We provide evidence that segmenting only one organ of interest and merging all surrounding structures into one label creates bias towards background in the label estimates suggested by the atlas. We propose a generative model that corrects for this effect by learning the background structures from the data. Inference in the model separates the background into distinct structures and consequently improves the segmentation accuracy. Our experiments demonstrate a clear improvement in several applications.
引用
收藏
页码:315 / 322
页数:8
相关论文
共 50 条
  • [31] Augmenting Atlas-Based Segmentation by Incorporating Image Features Proximal to the Atlas Contours
    Li, Dengwang
    Liu, Li
    Kapp, Daniel S.
    Xing, Lei
    MEDICAL PHYSICS, 2015, 42 (06) : 3294 - 3295
  • [32] Robust Atlas-Based Segmentation of Highly Variable Anatomy: Left Atrium Segmentation
    Depa, Michal
    Sabuncu, Mert R.
    Holmvang, Godtfred
    Nezafat, Reza
    Schmidt, Ehud J.
    Golland, Polina
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART, 2010, 6364 : 85 - +
  • [33] Hierarchical Atlas-Based Segmentation of the Human Skeleton in CT Images
    Fu, Y.
    Liu, S.
    Li, H.
    Yang, D.
    MEDICAL PHYSICS, 2017, 44 (06) : 3264 - 3264
  • [34] Development of an Automated Atlas-based Segmentation Technology Assessment Methodology
    Hwee, J.
    Louie, A.
    Bauman, G.
    Sexton, T.
    Lock, M.
    Ahmad, B.
    D'Souza, D.
    Rodrigues, G.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2011, 81 (02): : S835 - S836
  • [35] Multi-classifier framework for atlas-based image segmentation
    Rohlfing, T
    Maurer, CR
    PATTERN RECOGNITION LETTERS, 2005, 26 (13) : 2070 - 2079
  • [36] Atlas-based segmentation of cochlear microstructures in cone beam CT
    Powell, Kimerly A.
    Wiet, Gregory J.
    Hittle, Brad
    Oswald, Grace, I
    Keith, Jason P.
    Stredney, Don
    Andersen, Steven Arild Wuyts
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (03) : 363 - 373
  • [37] A review of atlas-based segmentation for magnetic resonance brain images
    Cabezas, Mariano
    Oliver, Arnau
    Llado, Xavier
    Freixenet, Jordi
    Cuadra, Meritxell Bach
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) : E158 - E177
  • [38] Atlas-based segmentation of cochlear microstructures in cone beam CT
    Kimerly A. Powell
    Gregory J. Wiet
    Brad Hittle
    Grace I. Oswald
    Jason P. Keith
    Don Stredney
    Steven Arild Wuyts Andersen
    International Journal of Computer Assisted Radiology and Surgery, 2021, 16 : 363 - 373
  • [39] Atlas-Based Probabilistic Fibroglandular Tissue Segmentation in Breast MRI
    Wu, Shandong
    Weinstein, Susan
    Kontos, Despina
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2012, PT II, 2012, 7511 : 437 - 445
  • [40] Automated atlas-based segmentation for skull base surgical planning
    Konuthula, Neeraja
    Perez, Francisco A.
    Maga, A. Murat
    Abuzeid, Waleed M.
    Moe, Kris
    Hannaford, Blake
    Bly, Randall A.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (06) : 933 - 941