Spherical Quadrilaterals with Three Non-integer Angles

被引:0
|
作者
Eremenko, A. [1 ]
Gabrielov, A. [1 ]
Tarasov, V. [2 ,3 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
[3] Russian Acad Sci, VA Steklov Math Inst, St Petersburg Dept, 27 Fonlanka, St Petersburg 191023, Russia
基金
美国国家科学基金会;
关键词
surfaces of positive curvature; conic singularities; Heun equation; Schwarz equation; accessory parameter; conformal mapping; circular polygon; CONSTANT CURVATURE; METRICS; SINGULARITIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A spherical quadrilateral is a bordered surface homeomorphic to a closed disk, with four distinguished boundary points called corners, equipped with a Riemannian metric of constant curvature 1, except at the corners, and such that the boundary arcs between the corners are geodesic. We discuss the problem of classification of these quadrilaterals and perform the classification up to isometry in the case that one corner of a quadrilateral is integer (i.e., its angle is a multiple of pi) while the angles at its other three corners are not multiples of pi. The problem is equivalent to classification of Heun's equations with real parameters and unitary monodromy, with the trivial monodromy at one of its four singular point.
引用
收藏
页码:134 / 167
页数:34
相关论文
共 50 条
  • [21] Discrete Scaling in Non-integer Dimensions
    Frederico, T.
    Francisco, R. M.
    Rosa, D. S.
    Krein, G.
    Yamashita, M. T.
    FEW-BODY SYSTEMS, 2024, 65 (02)
  • [22] A formula for the non-integer powers of the Laplacian
    He, ZX
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 1999, 15 (01): : 21 - 24
  • [23] NON-INTEGER ORDERS IN CHEMICAL KINETICS
    Oliveira, Andre P.
    Faria, Roberto B.
    QUIMICA NOVA, 2010, 33 (06): : 1412 - 1415
  • [24] SECURE COMPUTATIONS ON NON-INTEGER VALUES
    Franz, M.
    Deiseroth, B.
    Hamacher, K.
    Jha, S.
    Katzenbeisser, S.
    Schroeder, H.
    2010 IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS), 2010,
  • [25] Unique developments in non-integer bases
    Komornik, V
    Loreti, P
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (07): : 636 - 639
  • [26] Refinable functions with non-integer dilations
    Dai, Xin-Rong
    Feng, De-Jun
    Wang, Yang
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (01) : 1 - 20
  • [27] Efficiently Certifying Non-Integer Powers
    Kaltofen, Erich
    Lavin, Mark
    COMPUTATIONAL COMPLEXITY, 2010, 19 (03) : 355 - 366
  • [28] CNN with non-integer order cells
    Arena, P
    Bertucco, L
    Fortuna, L
    Nunnari, G
    Occhipinti, L
    Porto, D
    CNNA 98 - 1998 FIFTH IEEE INTERNATIONAL WORKSHOP ON CELLULAR NEURAL NETWORKS AND THEIR APPLICATIONS - PROCEEDINGS, 1998, : 372 - 378
  • [29] A formula for the non-integer powers of the laplacian
    Zhengxu He
    Acta Mathematica Sinica, 1999, 15 : 21 - 24
  • [30] Efficiently Certifying Non-Integer Powers
    Erich Kaltofen
    Mark Lavin
    computational complexity, 2010, 19 : 355 - 366