Spherical Quadrilaterals with Three Non-integer Angles

被引:0
|
作者
Eremenko, A. [1 ]
Gabrielov, A. [1 ]
Tarasov, V. [2 ,3 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Indiana Univ Purdue Univ, Dept Math Sci, Indianapolis, IN 46202 USA
[3] Russian Acad Sci, VA Steklov Math Inst, St Petersburg Dept, 27 Fonlanka, St Petersburg 191023, Russia
基金
美国国家科学基金会;
关键词
surfaces of positive curvature; conic singularities; Heun equation; Schwarz equation; accessory parameter; conformal mapping; circular polygon; CONSTANT CURVATURE; METRICS; SINGULARITIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A spherical quadrilateral is a bordered surface homeomorphic to a closed disk, with four distinguished boundary points called corners, equipped with a Riemannian metric of constant curvature 1, except at the corners, and such that the boundary arcs between the corners are geodesic. We discuss the problem of classification of these quadrilaterals and perform the classification up to isometry in the case that one corner of a quadrilateral is integer (i.e., its angle is a multiple of pi) while the angles at its other three corners are not multiples of pi. The problem is equivalent to classification of Heun's equations with real parameters and unitary monodromy, with the trivial monodromy at one of its four singular point.
引用
收藏
页码:134 / 167
页数:34
相关论文
共 50 条
  • [1] A novel technique for calibration of polygon angles with non-integer subdivision of indexing table
    Yandayan, T
    Akgöz, SA
    Haitjema, H
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2002, 26 (04): : 412 - 424
  • [2] Efimov States of Three Unequal Bosons in Non-integer Dimensions
    Christensen, Esben Rohan
    Jensen, A. S.
    Garrido, E.
    FEW-BODY SYSTEMS, 2018, 59 (06)
  • [3] Efimov States of Three Unequal Bosons in Non-integer Dimensions
    Esben Rohan Christensen
    A. S. Jensen
    E. Garrido
    Few-Body Systems, 2018, 59
  • [4] Branch and bound, integer, and non-integer programming
    J. J. H. Forrest
    J. A. Tomlin
    Annals of Operations Research, 2007, 149 : 81 - 87
  • [5] Branch and bound, integer, and non-integer programming
    Forrest, J. J. H.
    Tomlin, J. A.
    ANNALS OF OPERATIONS RESEARCH, 2007, 149 (01) : 81 - 87
  • [6] NON-INTEGER PULSE DIVISION
    不详
    CONTROL AND INSTRUMENTATION, 1980, 12 (10): : 21 - 21
  • [7] Developments in non-integer bases
    Erdos, P
    Komornik, V
    ACTA MATHEMATICA HUNGARICA, 1998, 79 (1-2) : 57 - 83
  • [8] Developments in Non-Integer Bases
    P. Erdös
    V. Komornik
    Acta Mathematica Hungarica, 1998, 79 : 57 - 83
  • [9] Probing non-integer dimensions
    Krapivsky, P. L.
    Redner, S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (06)
  • [10] Biomaterials in non-integer dimensions
    Young, Iris D.
    Fraser, James S.
    NATURE CHEMISTRY, 2019, 11 (07) : 599 - 600