Model selection in spatio-temporal electromagnetic source analysis

被引:10
|
作者
Waldorp, LJ
Huizenga, HM
Nehorai, A
Grasman, RPPP
Molenaar, PCM
机构
[1] Univ Amsterdam, Dept Psychol, NL-1018 WB Amsterdam, Netherlands
[2] Univ Illinois, Dept Elect & Comp Engn, Chicago, IL 60607 USA
关键词
Akaike criterion; Bayesian criterion; EEG; MEG; model order selection; source localization; testing source activity;
D O I
10.1109/TBME.2004.842982
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Several methods [model selection procedures (MSPs)] to determine the number of sources in electroencephalogram (EEG) and magnetoencphalogram (MEG) data have previously been investigated in an instantaneous analysis. In this paper, these MSPs are extended to a spatio-temporal analysis if possible. It is seen that the residual variance (RV) tends to overestimate the number of sources. The Akaike information criterion (AIC) and the Wald test on amplitudes (WA) and the Wald test on locations (WL) have the highest probabilities of selecting the correct number of sources. The WA has the advantage that it offers the opportunity to test which source is active at which time sample.
引用
收藏
页码:414 / 420
页数:7
相关论文
共 50 条
  • [1] Maximum likelihood estimation with a parametric noise covariance model for instantaneous and spatio-temporal electromagnetic source analysis
    Waldorp, LJ
    Huizenga, HM
    Dolan, CV
    Grasman, RPPP
    Molenaar, PCM
    [J]. SAM 2000: PROCEEDINGS OF THE 2000 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, 2000, : 266 - 270
  • [2] Incremental learning of spatio-temporal patterns with model selection
    Yamauchi, Koichiro
    Sato, Masayoshi
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2007, PT 1, PROCEEDINGS, 2007, 4668 : 149 - +
  • [3] Spatio-Temporal Inversion Using the Selection Kalman Model
    Conjard, Maxime
    Omre, Henning
    [J]. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2021, 7
  • [4] Spatio-temporal Bayesian model selection for disease mapping
    Carroll, Rachel
    Lawson, Andrew B.
    Faes, Christel
    Kirby, Russell S.
    Aregay, Mehreteab
    Watjou, Kevin
    [J]. ENVIRONMETRICS, 2016, 27 (08) : 466 - 478
  • [5] Spatio-temporal source localization and granger causality in ictal source analysis
    Ding, L.
    Worrell, G. A.
    Lagerlund, T. D.
    He, B.
    [J]. 2006 28TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-15, 2006, : 6171 - +
  • [6] Estimation and Model Selection for an IDE-Based Spatio-Temporal Model
    Scerri, Kenneth
    Dewar, Michael
    Kadirkamanathan, Visakan
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (02) : 482 - 492
  • [7] The continuous spatio-temporal model (CSTM) as an exhaustive framework for multi-scale spatio-temporal analysis
    Van de Weghe, N.
    de Roo, B.
    Qiang, Y.
    Versichele, M.
    Neutens, T.
    de Maeyer, P.
    [J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2014, 28 (05) : 1047 - 1060
  • [8] A model of spatio-temporal structure of the substorm electromagnetic disturbance and its consequences
    Antonova, AE
    Gubar', YI
    Kropotkin, AP
    [J]. PHYSICS AND CHEMISTRY OF THE EARTH PART C-SOLAR-TERRESTIAL AND PLANETARY SCIENCE, 2000, 25 (1-2): : 43 - 46
  • [9] Spatio-temporal source analysis of movement associated magnetic fields
    Hoshiyama, M
    Kakigi, R
    Berg, P
    Koyama, S
    Shimojo, M
    Watanabe, S
    Nakamura, A
    [J]. BRAIN TOPOGRAPHY TODAY, 1997, 1147 : 57 - 63
  • [10] A study of polarization diversity using an electromagnetic spatio-temporal channel model
    Svantesson, T
    [J]. IEEE VEHICULAR TECHNOLOGY CONFERENCE, FALL 2000, VOLS 1-6, PROCEEDINGS: BRINGING GLOBAL MOBILITY TO THE NETWORK AGE, 2000, : 79 - 86