Communication-efficient algorithms for parallel latent Dirichlet allocation

被引:3
|
作者
Yan, Jian-Feng [1 ]
Zeng, Jia [1 ]
Gao, Yang [1 ]
Liu, Zhi-Qiang [2 ]
机构
[1] Suzhou Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China
[2] City Univ Hong Kong, Sch Creat Media, Hong Kong, Hong Kong, Peoples R China
关键词
Latent Dirichlet allocation; Parallel learning; Zipf's law; Belief propagation; Gibbs sampling;
D O I
10.1007/s00500-014-1376-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Latent Dirichlet allocation (LDA) is a popular topic modeling method which has found many multimedia applications, such as motion analysis and image categorization. Communication cost is one of the main bottlenecks for large-scale parallel learning of LDA. To reduce communication cost, we introduce Zipf's law and propose novel parallel LDA algorithms that communicate only partial important information at each learning iteration. The proposed algorithms are much more efficient than the current state-of-theart algorithms in both communication and computation costs. Extensive experiments on large-scale data sets demonstrate that our algorithms can greatly reduce communication and computation costs to achieve a better scalability.
引用
收藏
页码:3 / 11
页数:9
相关论文
共 50 条
  • [41] Differentially Private and Communication-Efficient Distributed Nonconvex Optimization Algorithms
    Xie, Antai
    Yi, Xinlei
    Wang, Xiaofan
    Cao, Ming
    Ren, Xiaoqiang
    arXiv, 2023,
  • [42] Communication-efficient parallel multiway and approximate minimum cut computation
    auf der Heide, FM
    Martinez, GT
    LATIN '98: THEORETICAL INFORMATICS, 1998, 1380 : 316 - 330
  • [43] Sequential latent Dirichlet allocation
    Du, Lan
    Buntine, Wray
    Jin, Huidong
    Chen, Changyou
    KNOWLEDGE AND INFORMATION SYSTEMS, 2012, 31 (03) : 475 - 503
  • [44] Collective Latent Dirichlet Allocation
    Shen, Zhi-Yong
    Sun, Jun
    Shen, Yi-Dong
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 1019 - 1024
  • [45] The Security of Latent Dirichlet Allocation
    Mei, Shike
    Zhu, Xiaojin
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 681 - 689
  • [46] Sequential latent Dirichlet allocation
    Lan Du
    Wray Buntine
    Huidong Jin
    Changyou Chen
    Knowledge and Information Systems, 2012, 31 : 475 - 503
  • [47] A note on communication-efficient deterministic parallel algorithms for planar point location and 2D Voronoï diagram
    Diallo, Mohamadou
    Ferreira, Afonso
    Rau-Chaplin, Andrew
    Parallel Processing Letters, 2001, 11 (2-3) : 327 - 340
  • [48] WarpLDA: a Cache Efficient O(1) Algorithm for Latent Dirichlet Allocation
    Chen, Jianfei
    Li, Kaiwei
    Zhu, Jun
    Chen, Wenguang
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2016, 9 (10): : 744 - 755
  • [49] PLDA+: Parallel Latent Dirichlet Allocation with Data Placement and Pipeline Processing
    Liu, Zhiyuan
    Zhang, Yuzhou
    Chang, Edward Y.
    Sun, Maosong
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
  • [50] Polya Urn Latent Dirichlet Allocation: A Doubly Sparse Massively Parallel Sampler
    Terenin, Alexander
    Magnusson, Mans
    Jonsson, Leif
    Draper, David
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (07) : 1709 - 1719