Detecting the complex motion of self-propelled micromotors in microchannels by electrochemistry

被引:18
|
作者
Khezri, Bahareh [1 ]
Moo, James Guo Sheng [1 ]
Song, Peng [2 ]
Fisher, Adrian C. [2 ]
Pumera, Martin [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Chem & Biol Chem, Singapore 637371, Singapore
[2] Univ Cambridge, Dept Chem Engn & Biotechnol, New Museums Site,Pembroke St, Cambridge CB2 3RA, England
来源
RSC ADVANCES | 2016年 / 6卷 / 102期
基金
新加坡国家研究基金会;
关键词
MERCURY DROP ELECTRODE; IMPACT ELECTROCHEMISTRY; NANOPARTICLES; VOLTAMMETRY; DELIVERY; NANO/MICROMOTORS; POLAROGRAPHY; NANOMOTORS; COLLISIONS; PARTICLES;
D O I
10.1039/c6ra22059b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Autonomous self-propelled nano/micromotors are new frontiers in micro-and nanotechnology, with a plethora of possible applications in environmental remediation and biomedicine. However, key challenges remain, one of which is the monitoring of motion in these self-propelled nano-and microdevices. Tracking of these miniaturized objects is typically done by optical microscopy. Such a manual methodology has several inherent challenges, ranging from demanding computational power for optical image analysis to following objects in opaque or non-transparent environments. Here we developed a monitoring system for an autonomous self-propelled micromotor in a microfluidic channel via the placement of electrodes in the pathways. The electrochemical detection methodology, based on the disturbances in the electrical double layer of an electrode surface in our devised instrumentation technique, allows for different modes of motion in micromotors in channel environments to be recognized. This ability to detect the motion of autonomous self-powered micromotors in opaque/nontransparent channels will find widespread applications in the future.
引用
收藏
页码:99977 / 99982
页数:6
相关论文
共 50 条
  • [21] Blood Proteins Strongly Reduce the Mobility of Artificial Self-Propelled Micromotors
    Wang, Hong
    Zhao, Guanjia
    Pumera, Martin
    CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (49) : 16756 - 16759
  • [22] Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment
    Li, Longqiu
    Wang, Jiyuan
    Li, Tianlong
    Song, Wenping
    Zhang, Guangyu
    SOFT MATTER, 2014, 10 (38) : 7511 - 7518
  • [23] Self-Propelled Micromotors for Naked-Eye Detection of Phenylenediamines Isomers
    Maria-Hormigos, Roberto
    Jurado-Sanchez, Beatriz
    Escarpa, Alberto
    ANALYTICAL CHEMISTRY, 2018, 90 (16) : 9830 - 9837
  • [24] Self-propelled micromotors based on Au-mesoporous silica nanorods
    Wang, Ying-Shuai
    Xia, Hong
    Lv, Chao
    Wang, Lei
    Dong, Wen-Fei
    Feng, Jing
    Sun, Hong-Bo
    NANOSCALE, 2015, 7 (28) : 11951 - 11955
  • [25] Self-Propelled Micromotors Monitored by Particle-Electrode Impact Voltammetry
    Moo, James Guo Sheng
    Pumera, Martin
    ACS SENSORS, 2016, 1 (07): : 949 - 957
  • [26] Rapid purification and enrichment of viral particles using self-propelled micromotors
    Cui, Haipeng
    Pan, Wenwei
    Li, Tiechuan
    Shen, Xiaotian
    Chang, Ye
    Pang, Wei
    Duan, Xuexin
    NANOSCALE, 2023, 15 (42) : 17105 - 17112
  • [27] Biofunctionalized self-propelled micromotors as an alternative on-chip concentrating system
    Restrepo-Perez, Laura
    Soler, Lluis
    Martinez-Cisneros, Cynthia
    Sanchez, Samuel
    Schmidt, Oliver G.
    LAB ON A CHIP, 2014, 14 (16) : 2914 - 2917
  • [28] Collective Motion of Self-Propelled Particles with Memory
    Nagai, Ken H.
    Sumino, Yutaka
    Montagne, Raul
    Aranson, Igor S.
    Chate, Hugues
    PHYSICAL REVIEW LETTERS, 2015, 114 (16)
  • [29] Spontaneously ordered motion of self-propelled particles
    Czirok, A
    Stanley, HE
    Vicsek, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (05): : 1375 - 1385
  • [30] Self-propelled motion of multiple interacting microcapsules
    Bhattacharya, Amitabh
    Usta, O. Berk
    Balazs, Anna C.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237