Well-posedness and H(div)-conforming finite element approximation of a linearised model for inviscid incompressible flow

被引:6
|
作者
Barrenechea, Gabriel [1 ]
Burman, Erik [2 ]
Guzman, Johnny [3 ]
机构
[1] Univ Strathclyde, Dept Math & Stat, 26 Richmond St, Glasgow G1 1XH, Lanark, Scotland
[2] UCL, Dept Math, London WC1E 6BT, England
[3] Brown Univ, Div Appl Math, Box F 182 George St, Providence, RI 02912 USA
来源
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Inviscid flows; well-posedness; H(div)-conforming finite elements; error estimates; DISCONTINUOUS GALERKIN METHOD; STOKES; DISCRETIZATION; CONVERGENCE;
D O I
10.1142/S0218202520500165
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a linearised model of incompressible inviscid flow. Using a regularisation based on the Hodge Laplacian we prove existence and uniqueness of weak solutions for smooth domains. The model problem is then discretised using H(div)-conforming finite element methods, for which we prove error estimates for the velocity approximation in the L-2-norm of order O(h(k+1/2)). We also prove error estimates for the pressure error in the L-2-norm.
引用
收藏
页码:847 / 865
页数:19
相关论文
共 50 条