Well-posedness and H(div)-conforming finite element approximation of a linearised model for inviscid incompressible flow

被引:6
|
作者
Barrenechea, Gabriel [1 ]
Burman, Erik [2 ]
Guzman, Johnny [3 ]
机构
[1] Univ Strathclyde, Dept Math & Stat, 26 Richmond St, Glasgow G1 1XH, Lanark, Scotland
[2] UCL, Dept Math, London WC1E 6BT, England
[3] Brown Univ, Div Appl Math, Box F 182 George St, Providence, RI 02912 USA
来源
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Inviscid flows; well-posedness; H(div)-conforming finite elements; error estimates; DISCONTINUOUS GALERKIN METHOD; STOKES; DISCRETIZATION; CONVERGENCE;
D O I
10.1142/S0218202520500165
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a linearised model of incompressible inviscid flow. Using a regularisation based on the Hodge Laplacian we prove existence and uniqueness of weak solutions for smooth domains. The model problem is then discretised using H(div)-conforming finite element methods, for which we prove error estimates for the velocity approximation in the L-2-norm of order O(h(k+1/2)). We also prove error estimates for the pressure error in the L-2-norm.
引用
收藏
页码:847 / 865
页数:19
相关论文
共 50 条
  • [1] Well-posedness of an electric interface model and its finite element approximation
    Ammari, Habib
    Chen, Dehan
    Zou, Jun
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (03): : 601 - 625
  • [2] Well-posedness and finite element approximation of time dependent generalized bioconvective flow
    Cao, Yanzhao
    Chen, Song
    van Wyk, Hans-Werner
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2020, 36 (04) : 709 - 733
  • [3] WELL-POSEDNESS AND FINITE ELEMENT APPROXIMATION FOR THE CONVECTION MODEL IN SUPERPOSED FLUID AND POROUS LAYERS
    Zhang, Yuhong
    Shan, Li
    Hou, Yanren
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 541 - 564
  • [4] Unilateral problem for the Stokes equations: The well-posedness and finite element approximation
    Saito, Norikazu
    Sugitani, Yoshiki
    Zhou, Guanyu
    APPLIED NUMERICAL MATHEMATICS, 2016, 105 : 124 - 147
  • [5] On the well-posedness of the incompressible flow in porous media
    Xu, Fuyi
    Liu, Lishan
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (12): : 6371 - 6381
  • [6] An H(div)-Conforming Finite Element Method for the Biot Consolidation Model
    Zeng, Yuping
    Cai, Mingchao
    Wang, Feng
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2019, 9 (03) : 558 - 579
  • [7] H (div)-conforming finite element tensors with constraints
    Chen, Long
    Huang, Xuehai
    RESULTS IN APPLIED MATHEMATICS, 2024, 23
  • [8] Well-posedness and finite element approximation of mixed dimensional partial differential equations
    Hellman, Fredrik
    Malqvist, Axel
    Mosquera, Malin
    BIT NUMERICAL MATHEMATICS, 2024, 64 (01)
  • [9] Well-posedness and finite element approximation of mixed dimensional partial differential equations
    Fredrik Hellman
    Axel Målqvist
    Malin Mosquera
    BIT Numerical Mathematics, 2024, 64
  • [10] Global Well-Posedness of Free Interface Problems for the Incompressible Inviscid Resistive MHD
    Wang, Yanjin
    Xin, Zhouping
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (03) : 1323 - 1401